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ABSTRACT  

Many riveted steel bridges were built around one hundred years ago. The problem lay down 

on many of those bridges have not been designed for their current life cycle or work services.  

The present report considers the modeling of eleven connections in the program IDEA 

StatiCa of five different types of old riveted steel bridges in the Czech Republic and focuses 

on the prediction of two types of formulas regarding the rotational stiffness depending on its 

inertia: the first one is based on those sections with low inertia and the second one in those 

sections with higher inertias.  It has taken two types of connections: beam-cross sections and 

cross beam-stringers, in bridges that are mostly trussed.  

It has to be consider, on the past there were not technological advances which allowed 

a correct prediction of the structural behavior, consequently, the connections were considered 

pinned or fixed, this calculation procedure delivers with uncertain internal forces in the 

element. For the analyzed connections (riveted) it is difficult to predict their behavior and 

their initial rotational stiffness, due to the number of elements that make up such as: plates, 

rivets, angles. 

Nowadays, exist better tools which improve the general analysis of structures, and 

allows us to have a better idea of the structural behavior, the computational model resembles 

reality. As a result, the two formulas were compared independently which every bridge and 

its characterization (Type of bridge, type of connection, height of the element, etc.). Also, 

the average percentage for each formula presented on previous studies were compared to the 

one obtained in this study, Therefore, it is recommended these formulas to save calculation 

time in riveted bridges with adequate safety coefficients, taking into account the error values 

previously mentioned. 

KEYWORDS 

Steel Bridges, Riveted Connections, IDEA StatiCa, Modelling, Initial Rotational Stiffness, 

Moment of inertia, Formula.   
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RESUMEN 

Muchos puentes de acero remachados fueron construidos hace cien años. El problema radica 

en que muchos de esos puentes no han sido diseñados para su ciclo de vida actual o sus 

servicios de trabajo. 

El presente informe consiste en el modelado de once conexiones en el programa IDEA 

StatiCa de cinco tipos diferentes de puentes de acero remachados en la República Checa y se 

centra en la predicción de dos tipos de fórmulas sobre la rigidez rotacional en función de su 

inercia: la primera fórmula se basa en aquellas secciones con baja inercia y la segunda en 

aquellas secciones con mayor inercia. Ha tomado dos tipos de conexiones: secciones 

transversales de vigas y travesaños transversales, en puentes que en su mayoría son cerchas. 

 Hay que tener en cuenta que en el pasado no hubo avances tecnológicos que 

permitieran una correcta predicción del comportamiento estructural, por lo tanto, se puede 

inferir que en los elementos se calcularon con incertidumbre con respecto a las fuerzas 

internas, por ejemplo en el tipo de conexiones: Fijado, Semi-rígido o conexión fija. 

Para las conexiones analizadas (remachadas) es difícil predecir su comportamiento y su 

rigidez rotación inicial, debido a la cantidad de elementos que lo componen, como: placas, 

remaches, ángulos. 

Hoy en día, existen mejores herramientas que mejoran el análisis general de las 

estructuras, y nos permite tener una mejor idea del comportamiento estructural, el modelo 

computacional se asemeja a la realidad. 

Como resultado, las dos fórmulas se compararon independientemente de cada puente 

y su caracterización (tipo de puente, tipo de conexión, altura del elemento, etc.). Además, el 

porcentaje promedio para cada fórmula presentada en estudios previos se comparó con el 

obtenido en este estudio. Por lo tanto, se recomienda que estas fórmulas ahorren tiempo de 

cálculo en puentes remachados con coeficientes de seguridad adecuados, teniendo en cuenta 

los valores de error mencionados anteriormente.  
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1. INTRODUCTION 

Many riveted steel bridges were built around one hundred years ago. The problem lay down 

on many of those bridges have not been designed for their current life cycle or work services. 

Today, many of them have been partially repaired or prepare for its new services required, 

see (1). Despite of the time has elapsed, there is no apparent damage to the structure due to 

deterioration or fatigue, but a technical study is necessary to verify the real state of the 

structure and, if necessary, propose reinforcement alternatives. 

The present report considers old riveted steel bridges in the Czech Republic and 

focuses on the prediction of a formula that relates the initial rotational stiffness of riveted 

connections with the inertia of the element. It has taken two types of connections: beam-

Cross sections and cross beam-stringers, in bridges that are mostly Trussed, as well as, it is 

based on master's thesis of on Óscar Minor "The Impact of the Connection Stiffness on the 

behavior of a Historical Steel Railway Bridge", see (2), where it can be observed, that there 

is a directly proportional relationship between the numbers of rivets with the initial rotational 

stiffness, as well as, the inertia of the element analyzed with the initial rotation rotational 

Stiffness. Thus, the intention of this work is to deepen the knowledge of the latest one. It has 

been found that there is a relationship between rigidity in the connections and lateral 

deformation of structures. see (3). 

It has to be consider, in the past there were not technological advances, such as 

computational programs, which allowed a correct prediction of the structural behavior, 

consequently, the connections were considered pinned or fixed , this calculation procedure 

delivers with uncertain internal forces in the element, for instance: Pinned connections 

induces only axial force on the elements, and at the middle of the element there is a greater 

bending moment, in the other hand at the extremes of the element the moment is zero. Semi-

rigid and Fixed connection produces bending moment and shear force, in short, internal 

stresses on the elements and the bending moment are distributed between the extremes and 

at the middle of it, see [3]. 

For the analyzed connections (riveted) it is difficult to predict their behavior and their 

initial Rotational Stiffness, due to the number of elements that make up such as: plates, rivets, 

angles. 
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Currently, exist better tools which improve the general analysis of structures, and allows us 

to have a better idea of the structural behavior, the computational model resembles reality, 

so resources and calculation time can be optimized. The purpose of this study is to obtain a 

formula to facilitate old riveted bridge calculations and save valuable time, reduce 

uncertainties regarding the behavior of the elements. 
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2. STATE OF THE ART 

To begin this study, the different types of bridges are listed, which are classified by their 

main structural system, many bridges depend on span, carriageway width and types of traffic, 

see [4]. 

Girder bridges 

Bending moment on the middle of the span is main structural action. Girder bridges may be 

either solid web girders, truss girders or box girders, for example: plate girder bridges for 

less than 50 m and box girders for continuous spans up to 250 m, see (4). 

 

Figure 1.  Typical type of girder bridges. Ref. [4] 

Trussed structure 

Members are subjected to axial forces, the loads are applied on the nodes and the members 

have pinned connections that do not transfer any shear forces or flexural moments. They are 

simply supported at the ends. Truss bridges are suitable for the span range of 30 m to 375 m, 

see [4]. 

 

Figure 2. Typical type of trussed structure. Ref. [4] 

Rigid frame bridges  

In this type of structure, the main acting forces are flexure with some axial force, this bridges 

are suitable in the span range of 25 m to 200 m, see [4]. 

 

Figure 3. Rigid frame bridge. Ref. [4] 
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Arch bridges  

The arch is the main structural element. The main force is axial compression in arch rib, 

combined with some bending. Typically loads are transferred to the foundations due to the 

arches. The span suitable for this structure is between 100m to 500 m, see [4]. 

 

Figure 4. Arch bridges. Ref. [4] 

Cable stayed bridges  

The structural system is based on vertical cables which support the main longitudinal girders. 

The span suitable for this structure is between 150 m to 700 m, see [4]. 

 

Figure 5. Cable stayed bridges. Ref. [4] 

Suspension bridges   

The bridge deck is suspended from cables, anchored to the ground at two ends and passing 

over towers erected near the two edges of the gap. This is the best solution for long span 

bridges between 500 m and over 2000 m, see [4]. 

 

Figure 6. Suspension bridges. Ref. [4] 
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Classification based on the position of carriageway 

There are three different of bridges depending of the position of the carriageway: 1. Deck 

type, 2. Through type and 3. Semi-through type.  

 Deck Type Bridge: The carriageway is on the top of the main load carrying members. In the 

case of deck type plate girder bridge, the railway is located on the top flanges and in the case 

of deck type truss girder bridge, the railway is located at the top chord level, see [4]. 

Through Type Bridge: The carriageway is at the bottom level of the main load carrying 

members. In the case of through type plate girder bridge, the railway is placed at the level of 

bottom flanges and in the case of the through type truss girder bridge, the railway is placed 

at the bottom chord level. The bracing of the top flange or lateral support of the top chord 

under compression is also required, see [4]. 

Semi through Type Bridge: The deck is in between the top and the bottom of the main load 

carrying members. The bracing of the top flange or top chord under compression is not done, 

the lateral restraint in the system is obtained usually by the U-frame action of the verticals 

and cross beam acting together, see [4]. 

 

 
Figure 7. Classification based on the position of the carriageway. Ref. [4] 

2.1. Classification of connections  

According to EN 1993-1-8, see (5), the classification if the connections is based on the effects 

of behavior of the join, there are three simplified joint models as follows: 

 Simple or pinned: The joint may be assumed not to transmit bending moments; 

 Continuous or rigid: The behavior of the joint may be assumed to have no effect on 

the analysis; 
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 Semi-continuous or semi rigid: The behavior of the joint needs to be considered in 

the analysis. 

 
Table 1. Type of joint model. Ref. [5] 

The design moment-rotation characteristic of a joint used in the analysis may be simplified 

by adopting any appropriate curve, including a linearized approximation, provided that the 

approximate curve lies wholly below the design moment-rotation characteristic, see [5]. 

Joints may be classified by their stiffness and by their strength. 

Classification by stiffness 

According Eurocode EN 1993-1-8, see [5], a joint may be classified as rigid, nominally 

pinned or semi-rigid according to its rotational stiffness, by comparing its initial rotational 

stiffness Sj,ini with the classification boundaries as it is showed in the figure (8). 

Nominally pinned joints 

A nominally pinned joint should can transmit the internal forces, without developing 

significant moments which might adversely affect the members, or the structure and the joint 

should be able of accepting the resulting rotations under the design loads, see [5]. 

Rigid joints 

Joints classified as rigid may be assumed to have sufficient rotational stiffness to justify 

analysis based on full continuity, see [5]. 

Semi-rigid joints 

A joint which does not meet the criteria for a rigid joint or a nominally pinned joint should 

be classified as a semi-rigid joint. Semi-rigid joints provide a predictable degree of 

interaction between members, based on the design moment-rotation characteristics of the 

joints. Those joints should be capable of transmitting the internal forces and moments, see 

[5]. 
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Classification boundaries 

 

Figure 8. Classification boundaries. Ref. [5] 

Classification by strength 

A joint may be classified as full-strength, nominally pinned or partial strength by comparing 

its design moment resistance Mj,Rd with the design moment resistances of the members that 

it connects. When classifying joints, the design resistance of a member should be taken as 

that member adjacent to the joint, see [5]. 

2.2. Type of connections 

According Euro code 1993- 3, see [5], there are different types of connections depending of 

the configuration: Bolts, Rivets, Welded, hydride, etc...  

Bolts, nuts and washers 

Categories of bolted connections 

Shear connections 

 Category A: Bearing type 

 Category B: Slip-resistant at serviceability limit state 

 Category C: Slip-resistant at ultimate limit state 

Tension connections 
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 Category D: non-preloaded 

 Category E: preloaded, see [5]. 

Welded connections 

The provisions in this section apply to weldable structural steels conforming to EN 1993-1-

8 and to material thicknesses of 4 mm and over. The provisions also apply to joints in which 

the mechanical properties of the weld metal are compatible with those of the parent metal, 

should be also checked the welds subject to fatigue, see [5]. 

Rivets 

The material properties, dimensions and tolerances of steel rivets should comply with the 

requirements given on the national standards from every European country, see [5]. Historic 

steel bridges dating to before 1970 were built with rivets. Rivets were nearly always used to 

fasten together built-up structural steel on bridges. Rivets were also frequently used for the 

connections on steel bridges. Today, rivets are not used anymore, instead of them, welds and 

high strength bolts provide the functions, see (6).  

A rivet consists of a first rivet head – called manufactured head or shop head – formed 

by crushing the end of the cut segment of a cylindrical bar iron or steel called rivet shank. It 

connects Iron and steel plates and sections. The rivets were heated and then driven this 

process is called hot riveting. At that time the hot-riveting technique allowed to introduce 

advances in fabrication of iron and steel construction. The advantages of structural riveting 

e.g., reliability, affordability, design possibilities–permitted the development of new girder 

and column shapes, construction but also truss work. These innovations helped for the 

widespread construction of short and large span steel structures, see [4] and see (7). 

Additionally, riveted connections present a considerable amount of rigidity, but there are 

several uncertainties to account for this in the design of a joint, see [2]. 

Structural applications of hot rivets 

Hot rivets have two principal applications the first one is the fabrication of built-up sections 

like columns and beams and the second application is assembling of structures, skeleton 

frames or portal frames. Typically, built-up sections are mainly made of flat plates, angles 

shapes, L-sections, T-sections or U-sections connected by rivets. First, large girders in 

bending were fabricated and then columns in wrought iron and shortly later with steel. Solid- 
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wedded sections required rivet to ensure continuity in both longitudinal and transverse 

directions. In the transverse directions the constituent plates and sections were connected by 

rivets to effectively fabricate the built-up actions. In addition, web and chord member had to 

be extended in the longitudinal direction of the built-up section for large span lengths, see 

[7]. 

 
 

Figure 9. Structural application of rivets. Ref. [7] 

The assemble of structures, skeleton frames, portal frames or truss are other applications of 

the rivets. The rivet shank complete fills the rivet hole after driving, for designing propose, 

the contribution of the frictional strength is neglected, the riveted connections behave in pure 

shear/bearing. The applied loads are uniformly distributed within the rivets of a given joint, 

see [7]. 

 
Figure 10. Connections of rivets. Ref. [7] 
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2.3. Differences between rivets and bolts  

Today, numerous barriers have to be overcome when dealing with the repair or strengthening 

of existing riveted connections. Being the predominant joining technique on the late 19th 

century and the beginning of 20th century, but nowadays the know – how has being forgotten 

due to it cost, time consuming and modern technologies such bolts. That is the main reason 

of the lack of information on the design, in addition, it is difficult to accurately predict the 

actual strength and stiffness of riveted connections, see figure (11), as the quality of riveting 

is variable. Currently rivets are usually replaced with high strength bolts, or proprietary 

fasteners such a hock bolts, or tension control bolts, see [2] and see [7]. 

 

Figure 11. Comparison between riveted and bolted connections. Ref. [8] 

The figure (11), it is easy to appreciate the differences between rivets, bolts with zero 

clearance and bolts with clearance, see (8).and how they are working due to the load applied. 

Bolts are easy to replace if it is necessary, in the other hand, rivets are considered as a 

permeated as welding. The material of the rivet used to be cheaper but not the labor cost, it 

also may improve the stiffness of the connection and they can compensate hole 

misalignments, see [7]. Depending of the bolt they work in pure shear/bearing and tension. 

Riveted connections behave in pure shear/bearing, see [5] and see [7]. For both cases the 

applied loads are uniformly distributed within the rivets of a given joint, see [7].  
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2.4. The rotational stiffness 

A connection transmits the forces from one member to another. These forces can be axial 

force, shear, bending moment, torsion or a combination of them as it is usually the real case. 

Forces such as axial, shear, bending moment and torsion or a combination of all of them 

together which produce deformations of the structure, but the largest deformation is the 

rotation caused by the bending moment. As it was explained before on this document, in the 

past century, joints have been analyzed and designed considering that they are either pinned 

or fully rigid. but they represent two extreme conditions of the real behavior and it does 

exclude the third alternative of semi rigid. It is common to express the rotational deformation 

as a function of the bending moment applied in the connection, obtaining a moment-rotation 

curve, there are some different examples on the figure (11) with examples of curves for 

different types of connections. A fully pinned is represented on horizontal axis and the rigid 

behavior in the vertical axis; but in real structures the behavior falls always somewhere in 

between, see (9) and see [2]. 

 

Figure 12. Moment- rotation curves for different connections. Ref. [9] 



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

 

23 

 

As it is showed the T- stub connection is more rigid as it can resist high levels of 

moment with small rotation. On the other hand, single web angle tent to the pinned 

connection allowing large rotation with minimal transmission of bending moment, see [9]. 

Moment-curvature diagrams are usually obtained from physical tests, but for the 

analysis and design, it is possible to idealize the behavior of the connection with a linear 

relation between moment and rotation, followed by a state in which the rotation increases 

without resisting any more bending moment. This linear relationship is defined as the 

rotational stiffness Sj, see [9] and see [2]. 

 

Figure 13. Classification of connections according to the stiffness. Ref. [2] 

The moment required to produce unit rotation in a joint. EN 1993-1-8. The rotational stiffness 

of a joint should be determined from the flexibilities of its basic components, each 

represented by an elastic stiffness coefficient, see [5]. 

 

2.5. Calculation of joints according to Eurocode 

According to Eurocode EN 1993-1-8, see [5], and as it was already mention before in this 

document, the joints could be classified by the stiffness in rigid, normally pinned or semi-

rigid. A rigid connection must satisfy the following condition: 

Sj,ini ≥
kb E Ib

Lb
                                                              (1) 

Where: 

      kb = 8, for frames where bracing systems reducing horizontal displacements at least 80% 

      kb = 25, for other frames, in which in every story Kb/Kc > 0.1 
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Kb is the mean value of Ib/Lb for all the beams at the top of ‘that storey’ and Kc is the mean 

value of Ic/Lc for all the columns in ‘that storey’. A pinned connection must satisfy the 

following condition: 

Sj,ini ≤
0.5 E Ib

Lb
                                                          (2) 

Where: 

E  Is the elastic modulus,  

Ib  The second moment of area of the beam,  

Lb  The span center to center of the beam,  

From the parameter kb, this classification was taught for joints in structural frames. A truss 

connection is a case of a frame system, especially similar to a braced frame, see [2]. 

According to Eurocode EN 1993-1-8, see [5], the rotational stiffness should be 

determined from the flexibilities of its basic components, each represented by an elastic 

stiffness coefficient ki. These elastic stiffness coefficients are for general application 

The rotational stiffness Sj is computed as: 

                                                          (3) 

Where: 

z  Is the lever arm,  

µ  Is the stiffness ratio Sj,ini/Sj 

 

The Eurocode EN 1993-1-8 provides formulas to compute the stiffness of basic joint 

components in the table 6.111 of Eurocode EN 1993-1-8, see [5]. 

2.6. The Component Method (CM) 

The component method (CM) is the main philosophy for the determination of the bearing 

capacity and the stiffness of the joint included in the Eurocode EN 1993-1-8, see [5]. This 

method applies to any type of steel or composite joints, whatever the geometrical 

configuration, the type of loading (axial force and/or bending moment) and the type of 

member sections. This method considers any joint as a set of individual basic components. 

For the particular joint shown in Figure 1 (steel joint configuration with an extended endplate 
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connection subjected to hogging bending moments), the relevant components are given. (10), 

see [10]. 

This method considers the joint as a system of interconnected components, and consists on:  

1. Identification of the active components in the joint being considered;  

2. Characterization or evaluation of the stiffness and/or resistance characteristics for 

each individual basic component (specific characteristics - initial stiffness, design 

resistance, ... - or the whole load-deformation curve); the distribution of forces needs 

to be done satisfying the equilibrium in the joint. 

3. Assembly of all the constituent components and evaluation of the stiffness and/or 

resistance characteristics of the whole joint (specific characteristics - initial stiffness 

Sj,ini, design resistance Mj,Rd, ... - or the whole moment-rotation curve),see [10]. 

 

 

Figure 14. Schematical representation of the component method. Ref. [10] 

On the figure (14), it is describing a steel joint an extended end-plate connection subjected 

to hogging moments identification of the active component- spring model, see [10]. 

The formulas proposed on the present report are specified for H and I sections, and they are 

not valid for hollowed sections. In the bridges analyzed the elements are a mix of angles and 

plates assembled together which configure H and I sections.  
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2.7. Previous investigation on joint stiffness 

The bases of the present report are focused on two previous studies: 

 A technical report studying made by SUDOP about the axial and rotational stiffness 

in the connections of a steel railway bridge, Tábor-Písek bridge, over the Vlatava River in 

the km 41,791, see (11). From now it will be referred as Tábor-Písek bridge. 

 

Figure 15. Tábor- Písek Bridge. ref. Wikipedia 

The bridge was built in 1886 and consist of three lattice trusses with a span of 84.4 m each. 

The sections were built with angles and plates and riveted connections and plates. The 

characterization and modeling of this bridges was made on the software IDEA Statica version 

5, see [2]. 
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Figure 16. Types of connections analyzed in the report on the Tábor – Písek bridge ref. 

[11] 

 The second one is a Master Thesis “The Impact of the Connection Stiffness on the 

behavior of a Historical Steel Railway Bridge” made in the Czech Technical University in 

Prague made by Oscar Minor, see [2], this report is the principal reference and the starting 

point for the present study, in which briefly analyzes the interaction between inertia moment 

and rotational stiffness This report includes the characterization of the connections and the 

modelling of the different joints on the software IDEA StatiCa version 8.0.15.43212. and the 

final analysis with CSI Bridge of the steel railway bridge that connects Vyšehrad and 

Smichov, over the Vltava River in the center of Prague. It is usually referred to as most pod 

Vyšehradem.  The bridge has a total length of 218 m and is divided in three sections, each 

one formed by polygonal arched trusses supported on masonry pillars over the river bed. In 

the Vyšehrad end, the bridge is continued by 4 spans of 19 m each made of steel girders; 

while in the Smichov side, it is followed by an embankment. The structure allocates two 

railways between the trusses, and pedestrian ways in cantilever at both sides. Since its 

construction in 1901. The connections are analyzed with models created in the software 

IDEA StatiCa, see [2]. From now it will be referred as Vyšehradem bridge  
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Figure 17. Steel Bridge near Vyšehrad. Ref. [2] 

 

Figure 18. Type of connections of Steel Bridge near Vyšehrad. Ref. [2] 
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3. JOINTS STIFFNESS ANALYSIS METHODS 

The railway transportation was introduced in the Czech territory during the Austro-

Hungarian Empire at the beginning of the nineteenth century with a horse-drawn railway 

between Linz (Austria) and Ceske Budejovice. The following decades other lines were 

constructed joining major cities. The first formal train between Vienna and Prague was 

opened on 1845, and the route from Prague to Dresden was completed in 1851, see (12) and 

see (13). At the end of nineteenth century in Europe, several number of bridges built around 

the same age during the boom of railways construction, therefore, many of them share 

characteristics of geometry, materials and type of connections, see [13], it will be taken into 

account in order to analyze if there are any kind of relationship between the moment of inertia 

of the joints and its initial stiffness.   

3.1. Component Method 

As it was explained in the section 2.6, this method applies to any type of steel or composite 

joints, whatever the geometrical configuration, this method considers any joint as a set of 

individual basic components.  

This method considers the joint as a system of interconnected components, and consists on:  

1. Identification of the active components in the joint being considered. 

2. Characterization or evaluation of the stiffness. 

3. Assembly of all the constituent components, see [10]. 

 

3.2. Final Element Method (FEM) 

The structural stress-analysis problem, the engineer seeks to determine displacements and 

stresses throughout the structure, which is in equilibrium and is subjected to applied loads. 

For many structures, it is difficult to determine the distribution of deformation using 

conventional methods, and thus the finite element method is necessarily used, see (14). 

There are two general direct approaches traditionally associated with the finite 

element method as applied to structural mechanics problems. One approach, called the force, 

or flexibility, method, uses internal forces as the unknowns of the problem. To obtain the 

governing equations, first the equilibrium equations are used. Then necessary additional 
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equations are found by introducing compatibility equations. The result is a set of algebraic 

equations for determining the redundant or unknown forces, see [14] 

The second approach, called the displacement, or stiffness method, assumes the 

displacements of the nodes as the unknowns of the problem. For instance, compatibility 

conditions requiring that elements connected at a common node, along a common edge, or 

on a common surface before loading remain connected at that node, edge, or surface after 

deformation takes place are initially satisfied. Then the governing equations are expressed in 

terms of nodal displacements using the equations of equilibrium and an applicable law 

relating forces to displacements, see [14]. 

 

3.3. CBFEM  

According to IDEA StatiCa, the weak point of standard Component method is in analyzing 

of internal forces and stress in a joint. CBFEM replaces specific analysis of internal forces in 

joint with general FEM, see [15]. 

 

Figure 19. CBFEM versus Component method. Ref. [15] 

Check methods of specific components like bolts or welds are done according to standard 

Component method. For the fasteners – bolts and welds – special FEM components had to 

be developed to model the welds and bolts behavior in joint. All parts of 1D members and 

all additional plates are modelled as plate/walls. These elements are made of steel (metal in 

general) and the behavior of this material is significantly nonlinear. The real stress-strain 

diagram of steel is replaced by the ideal plastic material for design purposes in building 

practice. The advantage of ideal plastic material is, that only yield strength and modulus of 

elasticity must be known to describe the material curve. The granted ductility of construction 
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steel is 15 %. The real usable value of limit plastic strain is 5% for ordinary design (1993-1-

5 appendix C Paragraph C.8 note 1).  The stress in steel cannot exceed the yield strength 

when using the ideal elastic-plastic stress-strain diagram. Internally, plates are modeled as 

shell elements with 6 degrees of freedom in each node: 3 translations (ux, uy uz) and 3 

rotations (φx, φy, φz), see [15], 

 

Figure 20. Real tension curve and the Ideal elastic- plastic diagram of material. Ref. [15] 

CBFEM method tries to create to model the real state precisely. The analysis plate/walls are 

not interconnected, no intersections are generated between them, unlike it is used to when 

modelling structures and buildings. Mesh of finite elements is generated on each individual 

plate independently on mesh of other plates.  Welds are modelled as special massless force 

interpolation constraints, which ensure the connection between the edge of one plate and the 

surface or edge of the other plate. Using plastic distribution, solid elements with elastic-

plastic material diagram with respect to weld throat thickness, position and orientation are 

inserted between interpolation links. Yielding of welds allows for redistribution of peak 

stresses along the weld length. This unique calculation model provides very good results – 

both for the point of view of precision and of the analysis speed. The method is protected by 

patent, see [15].  

Two approaches of modelling welds are implemented. 

The first option of weld model between plates is direct merge of meshes of welded 

plates. The load is transmitted through a force-deformation constrains to opposite plate. This 

model does not respect the stiffness of the weld and the stress distribution is conservative. 
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Stress peaks, which appear at the end of plate edges, in corners and rounding, govern the 

resistance along the whole length of the weld. To eliminate the effect of stress peaks three 

methods for evaluation of the weld can be chosen, see [15]:  

 Maximal stress (conservative)  

 Average stress on weld  

 Linear interpolation along weld, see [15]. 

The second approach uses an improved weld model. A special elastoplastic element 

is added between the plates. The element respects the weld throat thickness, position and 

orientation. Ideal plastic model is used and the plasticity state is controlled by stresses in the 

weld throat section. The stress peaks are redistributed along the longer part of the weld length, 

see [15].  

Bolted connection consists of two or more clasped plates and one or more bolts. Plates 

are placed loosely on each other.  A contact element is inserted between plates in the analysis 

model, which acts only in compression. No forces are carried in tension, see [15].  

Shear force is taken by bearing. Special model for its transferring in the force direction 

only is implemented. IDEA StatiCa Connection can check bolts for interaction of shear and 

tension. The bolt behavior is implemented according following picture, see [15]. 

 

Figure 21. Bolts for interaction of shear and tension. Ref. [15] 
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Where 

K  linear stiffness of bolt,  

Kp  stiffness of bolt at plastic branch,  

Flt  limit force for linear behavior of bolt,  

Ft,Rd  limit bolt resistance,  

ul  limit deformation of bolt. 

The contact between plates is treated according to the penalty method, which is 

basically the application of a penalty stiffness added between the node and the opposite plate 

when penetration of a node into an opposite surface is detected, see [15] and see [2]. 

The tensile force is transmitted to the plates by interpolation between the bolt shank 

and the nodes in the plate. For compression, the force is transmitted from the bolt shank to 

the plate in the bolt hole by interpolation links between the shank and hole edges nodes. 

Finally, the interaction between the axial and the shear forces is considered. The higher the 

tensile forces the less shear force is resisted by the bolt, see [15] and see [2]. 

Types of results obtained with IDEA StatiCa. Model of connection, automatic 

generated mesh, equivalent stress with deformation, and stresses in each plate. 

Another of the different results that can be obtained with the software is the shear force that 

is acting in each fastener, is it is verified in Figure (22). For the example shown, only axial 

force is applied to the elements so the resultant shear force is all in the same direction for all 

the fasteners. The force on the double angles is 10 KN and so is the sum of the shear forces 

of bolt in that section. The plate is loaded with other 10 KN, so the sum of the shear forces 

in the bolts for that plane is the total load of 20 KN. It can be noted that the load is distributed 

regularly in the bolts. This regularity is lost when bending force is acting on the member, 

which is the real case in many structures, and to account for this is complicated without the 

correct tools, see [2] and see [15]. 
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Figure 22. Shear force in the bolts. Ref. [2] 

3.3.1. IDEA StatiCa – CBFEM method 

The work will consist of advanced numerical modelling of old riveted joints that will be done 

by the CBFEM method with the software IDEA Connections. Some old railway bridges will 

be selected according of its difficulty to determinate the classification of the connection, in-

situ inspected, their joints evaluated, and select specific joints which will be modelled to 

obtain joint stiffness. Identify the correct value of stiffness in the joint is essential for bridge 

modelling, where joints are semi-rigid, and it has a significant impact on the internal forces 

of each element and in the global behavior of the structure. 

The connections were made with a specialized software. As it was described before 

in the section 2.6, the component method is the analysis of the stiffness on separated 

components that conform a normal connection, but this method doesn’t work property for 

riveted connections due to its complexity which involves hundreds of rivets and different 

plates. An alternative is to model the connection in finite element software like IDEA StatiCa, 

see (15), which allows modelling any type of connection, and the results obtained are either 

the capacity member in the connection, or the analysis of stiffness of the elements. 
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The IDEA StatiCa version 8.0.15.4637 allows to model in 3D steel joints and get the 

values of stress, deformations, fasteners and rigidity of the connection. It could perform four 

type of analysis; these are: 

 Stress/strain, response of the joint to applied design load 

 Stiffness analysis, stiffness of connection of selected member of the joint 

 Member capacity design, Joint is designed not on design load, but on maximal 

capacity of connected member, 

 Joint design resistance, ratio between design load and maximal load is determined 

for the whole joint, see [15]. 

 

Figure 23.Initial windows in IDEA StatiCa.. Ref. [15] 
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As It is showed on the figure 23 we have a range of possibilities for different types of 

connections and its tools allow modelling close to a real case. IDEA StatiCa used the CBFEM 

method with is based on the component method, see [15]. 

There is a possibility to use a user defined section, and some experiments where made 

using this to model the complete section as one member. It helps on the computational time 

since there were not fund any inconsistences on the construction of every model and the 

results will be the correct ones. 

 

Figure 24.Define General Section in IDEA StatiCa. Ref. [15] 

All the bridges on this present report are connected by rivets but there is not option 

for modeling them in IDEA StatiCa. This deficiency has been resolved replacing rivets with 

screws of user-defined dimensions corresponding to rivet parameters, see [11]. The figures 

(25) and (26) correspond to the curves of the shear loads vs deformation for rivets and bolts.  

User definition in IDEA StatiCa allows to change the characteristics of the bolt, so if it is 

changed the gross cross section area and the tensile stress area of the bolt; it will behave as a 

rivet. In the figure (26) the behavior of failure plate number 1 is closer to the behavior of the 

rivets showed in figure (25). The rivets yield around 60 Kips with approximately 0.18 inches 

and the in failure plate ,1 bolts yield around 60 Kips with approximately 0.15 inches. In order 

to get more accurate data, it was decided to modelling as the diameter of the rivet-bolt is 

equal to the hole in which it is placed.  
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Figure 25. Shear versus deformation curves for A 502 grade 1 rivets. Ref [8]. 

 

Figure 26. Shear load versus deformation curves for different failure plates. Ref [8]. 
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4. THE GOALS OF THE THESIS 

The purpose of the presented thesis is to analyze relationships between the stiffness and the 

moment of inertia for different steel railway bridges and evaluate the prediction formula of 

initial rotational stiffness (Sj) for the riveted connections in old steel bridges. The purpose of 

the prediction formula is for the creation of numerical models of riveted bridges, without 

difficult modeling of the connections.  

The necessary steps to achieve the goals are: 

 to select the representative types of steel bridges to be analyzed,  

 to select typical group of connections in the selected steel bridged,  

 to evaluate the connections geometry in order to model them, 

 to create detail 3D CBFEM models in IDEA StatiCa and obtain the initial rotational 

stiffness of the detail models,  

 to analyze the results, compare with existing results, evaluate the simple relationship 

and define the prediction formula,  

 to compare the prediction formula with the CBFEM models to estimate the average 

percent error. 
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5. SELECTIONS OF BRIDGES DEPENDING OF THE 

DETALING  

The project “Methods of expert assessment of railway bridges and determination of 

prediction procedures” is contracted by the Czech Railway Infrastructure Administration, 

SZDC by its initials in Czech, and executed by the Czech Technical University in Prague. 

The project is about 9 different types of bridges, each of them has a different and specific 

characteristic. They are the most representative bridges in the railway system in the Czech 

Republic, for instance: truss bridges, girder bridges, arch bridges, deck type, semi through, 

through bridges. In this section are described 5 bridges of different kind. 

5.1. Libocany -TU 502   

The official name of the bridges is Libocany this technical report will be referred as TU 502. 

The bridge is located over the river Ohře through Libočan on the kilometer 200,916, with the 

following GPS coordinates 50 ° 19'52.678''N 13 ° 31'6.762''E, this bridge connects Mladotice 

(mimo) – Žatec (mimo) (vč. Žatec západ); The bridge data are: length 129.40 m, width 8.10 

m, height of the bridge: 13.20 m.  (16), see [16]. This is a semi through type truss bridge. 

 

Figure 27.TU 502 bridge. Ref. [16] 

5.1.1. Geometry 

The bridge has a total length of 119.40 m and is divided in two sections 58.50 m formed by 

trusses supported on masonry pillars over the river bed, the year od manufacture was on 1907 
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and repair and coat at the year 1982. All the original structure is made of angles and plates 

joined with rivets. The structure is made of steel, beam truss, plain, rivet joints, ending of the 

truss perpendicular, the diagonals are made of angles. 

 Dimensions: span - 58,00 m, length - 58,50 m, width - 5,30 m 

 Main beams: truss, riveted, composite system diagonal and vertical (angles + flat 

materials), height max. - 6,34 m, width of the upper belt of the main beam - 320 mm, 

length - 58,50 m, axial distance of the main beams - 4.80 m. 

 Transverse bracing between ribbed trusses, riveted 

 Longitudinal bracing between the longitudinal straight angles (L profiles) 

unidirectional 

Year of manufacture: 1907 and Year of repair: 1982, from the front of the main beams at the 

beginning and end to the right - Coat IX. 1982 

           

 

Figure 28. Geometry of the TU 502 bridge. Ref. [16] 
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5.1.2. Group of connections  

 

On this present report it will be analyzed only the connections which are considered 

complicated to determinate its initial rotational stiffness. The characterization of joints helps 

on the analysis and data processing of the connections mas simplify the time of computing. 

In this work focuses on the connections in the deck which are divided in two groups: The 

connection between the main girder (or truss) with the cross beam; and the connections 

between cross beam with the stringer. On this bridge, it was important to define the initial 

stiffness on the connection between the truss and the cross beam at it is showed on the graphic 

below. 

 
Figure 29. Joint of interest on TU 502. Ref. [16] 

On the modelling uses the profiles on the figure (30) 

 

 

Figure 30. Profiles. Ref. [16] 
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  5.2.  Postoloprty – Vrbka- TU 581 

The official name of the bridges is or Postoloprty - Vrbka and for this technical report will 

be referred as TU 581. The bridge is located over the river Chomutovka on the kilometer 

215.615 m, with the following GPS coordinates 50 ° 21'50.653''N, 13 ° 41'54.458''E, this 

bridge connects Žatec (mimo) – České Zlatníky (mimo) (vč. Obrnice); The bridge data are: 

length 66.10 m, width 7.35 m, height of the bridge: 19.95 m, see [16]. This is a semi through 

type girder bridge. 

 

 

Figure 31. TU 581 bridge. Ref. [16] 

5.2.1. Geometry 

The bridge has a total length of 66.1 m and is divided in two sections 20.92 m formed by 

Girder, supported on masonry pillars over the river bed, the year od manufacture was on 1872 

and repair and at the year 1911 and on 1972. All the original structure is made of angles and 

plates joined with rivets. The structure is made of steel, beamed, welded joints and rivets, 

recessed bridge, end of perpendicular. 

 Dimensions: span - 20,52 m (MES), length - 20,92 m, width - 7,35 m 

 Main beams: Fully riveted, length 20,92 m, flange width 280 mm, height 2020 mm, 

axle distance 2.70 m.  Rectangles: riveted, height - 350 mm, flange width - 170 mm, 

axial distance - 1.80 m, placed on cross members with transverse intermediate 
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reinforcement from double angles. Rectangles: 10 pcs: top panel, height - 430 mm, 

bottom truss, height 930 mm, axle distance - 2,30 m. 

 Longitudinal bracing lower (composite), single "L" profiles + horizontal stacking 

sheets. 

 Longitudinal bracing top intermediate (composite), single "L" profiles + horizontal 

joint plates. 

 Laying the bearing structure: on the bearings. 

 Type and layout of bearings: fixed - steel stool on the support O 01. movable - steel 

three-roller on pillar P 01. 

 The distance between the longitudinal members of the constructions K 01 and the 

construction K 02 on the pillar P 01: approx. 120 mm. 

 Distance of main beams K 01 and construction K 02 on pillar P 01 left 530 mm, right 

530mm. 

Year of manufacture: 1872, the manufacturer's label is not on the construction, year of the 

first repair 1911 and last repair in 1972, designation of the company carrying out PKO and 

year of execution placed on the wall of the main beam at the beginning to the right of natural 

– mo- louny 1972.  
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Figure 32. Geometry of the TU 581 bridge. Ref. [16] 

5.2.2. Group of connections  

On this present report it will be analyzed only the connections which are considered 

complicated to determinate its initial rotational stiffness. The characterization of joints helps 

on the analysis and data processing of the connections mas simplify the time of computing. 

In this work focuses on the connections in the deck which are divided in two groups: The 

connection between the main girder (or truss) with the cross beam; and the connections 

between cross beam with the stringer. On this bridge, it was important to define the initial 

stiffness on the connection between the main girder with the cross beam and the connections 

between cross beam with the stringer as it is showed on the graphic below. 

 

Figure 33. Joint of interest on TU 581, main girder with the cross beam. Ref. [16] 
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Figure 34.Joint of interest on TU 581. Cross beam with the stringer. Ref [16] 

On the modelling uses the profiles on the figure (35) 

 

Figure 35. Profiles. Ref. [16] 

 

  5.3.  Kojetín- TU 2101 

The official name of the bridges is Kojetín and for this technical report will be referred as 

TU 2101. The bridge is located over the river Morava on the kilometer 74.798, with the 

following GPS coordinates 49 ° 21'1.7 "N, 17 ° 19'18.7" E, this bridge connects Brno hl.n. 

(mimo) - Přerov (mimo) (přes Chrlice); The bridge data are: length 130 m, width 5.5 m, 

height of the bridge: 5.40 m, see [16]. This is a through type truss bridge. 
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Figure 36. TU 2101 Bridge. Ref. [16] 

5.3.1. Geometry 

The bridge has a total length of 130 m and is divided in three sections: two equal sections of 

36.50 m and the middle one of 48.7 m formed by trusses supported on masonry pillars over 

the river bed, the year od manufacture was on 1907 and repair and coat at the year 1982. All 

the original structure is made of angles and plates joined with rivets. The structure is made 

of steel. 

First and third structures 

 Steel, bridge construction. Construction perpendicular. Element bottom element. 

 Length of construction 36,50 m (MES), span 35,68 m (MES), width 5,50 m (MES). 

 Main steel beams, riveted, trusses - base system with vertices, height up to 4250 mm, 

width 280 mm, axial distance 5000 mm. The lower longitudinal stiffening of the hl. 

of beams from double steel profiles L 120x120x14 mm, rivet connections. 

 Cross-bars, steel, ribbed, riveted I profiles, height 910 mm, lower flange width 275 

mm, axial distance 3560 mm, connections to the main beams rivets. 
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 Steel, full length, riveted I profiles, height 460 mm, lower flange width 210 mm, axial 

distance 1800 mm, connections to ribbed cross members. Transversal reinforcement 

of steel plates profiles U 160x65 mm, rivet connections. Longitudinal bracing of steel 

rail sections L 80x80x9 mm, rivet connections. 

 Load bearing support - bearing: steel bearings - O 01 fixed, P 01 movable two-roller. 

Second Structure 

 Steel, bridge construction. Construction perpendicular. Element bottom element. 

 Length of construction 48,70 m (MES), span 47,60 m (MES), width 5,50 m (MES). 

 Main steel beams, riveted, lattice - basic system with vertices, height up to 6000 mm, 

belt width 300 mm, axial distance 5000 mm. The upper belt of the truss beams is 

shaped L 130x130x14 mm, rivet connections. Upper transverse bracing of main 

beams made of steel, riveted, full-width I profiles, height approx. 250 mm, riveted 

connections. 

 Crossbars, steel, flat, riveted I profiles, height 900 mm, width of lower flanges 330 

mm, axial distance 5200 mm, connections to the main beams rivets. 

 Steel, full length, riveted I profiles, height 660 mm, width of lower flanges 280 mm, 

axial distance 1800 mm, connections to ribbed cross members. Transversal 

reinforcement of steel plates profiles U 160x65 mm, rivet connections. Longitudinal 

bracing of steel rail sections L 80x80x9 mm, rivet connections. 

 Load bearing support - bearing: Steel Pulley Bearings - P 01 fixed stationary, P 02 

movable two-roller. 

 Production and construction year 1953 and repair 1974. 

 

 

Figure 37.Over all structure TU 2101. Ref. [16] 
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Figure 38.First and third structure TU 2101. Ref. [16] 

 

 

 

Figure 39.Central structure TU 2101. Ref. [16] 

5.3.2. Group of connections 

On this present report it will be analyzed only the connections which are considered 

complicated to determinate its initial rotational stiffness. The characterization of joints helps 

on the analysis and data processing of the connections mas simplify the time of computing. 

In this work focuses on the connections in the deck which are divided in two groups: The 

connection between the main girder (or truss) with the cross beam; and the connections 
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between cross beam with the stringer. On this bridge, it was important to define the initial 

stiffness on the connection between the main girder with the cross beam and the connections 

between cross beam with the stringer as it is showed on the graphic below. 

First and third structure  

 

Figure 40. Joint of interest on TU 2101. Main girder with the cross beam. Ref. [16] 

 

Figure 41. Joint of interest on TU 2101. Cross beam with the stringer. Ref. [16] 

On the modelling uses the profiles on the figure (42) 
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Figure 42. Profiles. Ref. [16] 

Middle Structure 

 

Figure 43. Joint of interest on TU 2101. Main girder with the cross beam. Ref. [16] 

 

Figure 44. Joint of interest on TU 2101.Cross beam with the stringer. Ref. [16] 



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

 

51 

 

5.4. Domašov nad Bystřicí- TU 2191 

The official name of the bridges is Domašov nad Bystřicí and for this technical report will 

be referred as TU 2191. The bridge is located over the river Hrubá on the kilometer 28.162 

m, with the following GPS coordinates 49 ° 43'52.074 "N, 17 ° 26'29.108" E, this bridge 

connects Olomouc hl. n. (m) (O. hl. n. Bělidla vč) - Krnov; The bridge data are: length 31.55 

m, width 5.37 m, height of the bridge: 4.82 m, Bridging Length: 18.55 m, see [16]. This is a 

deck type girder bridge. 

 
Figure 45.TU 2191 Bridge. Ref. [16] 

5.4.1. Geometry 

The bridge has a total length of 20.10 m formed by steel beams supported on masonry pillars 

over the river bed, the year od manufacture was on 1899. All the original structure is made 

of angles and plates joined with rivets. The structure is made of steel, beam, truss, the 

diagonals are made of angles. 

 Steel bridge construction. Construction perpendicular. The bridge head is recessed. 

 Length of construction 20,10 m (MES), span 19,50 m (MES), width 4,55 m (MES). 

Main steel beams, solid, riveted "I" profiles 1855 mm high, 275 mm flange widths 

and axial distance of the main beams 2500 mm. 

 Longitudinal bracing of main beams made of steel "L" profiles top 70x70x8. 

 Cross reinforcement of main steel beams, height 1180 mm, axial distance 1940 mm. 

 Cross bars, lattice, "L" profiles, axial distance 1940 mm. 
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 Steel, solid, welded "I" profile height 335 mm, flange width 150 mm, axial distance 

1800 mm. 

 longitudinal bracing of steel "L" profiles 80x80x9  

 transverse bracing of steel profiles U 140x60. 

 The manufacturer's table or PKO painting label is not available. 

 Structural bearing - bearing: steel plate - O 01 fixed, O 02 movable. 

Production and construction year 1899 (MES), 1962 repair and PKO 1980. 

 

 

 

Figure 46.Geometry of the TU 2191 bridge. Ref. [16] 
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5.4.2. Group of connections  

On this present report it will be analyzed only the connections which are considered 

complicated to determinate its initial rotational stiffness. The characterization of joints helps 

on the analysis and data processing of the connections mas simplify the time of computing. 

In this work focuses on the connections in the deck which are divided in two groups: The 

connection between the main girder (or truss) with the cross beam; and the connections 

between cross beam with the stringer. On this bridge, it was important to define the initial 

stiffness on the connection between the main girder with the cross beam as it is showed on 

the graphic below. 

 
Figure 47. Joint of interest on TU 2191. Ref. [16] 

 

 5.5. Luzna - TU 2362  

The official name of the bridges is Luzna and for this technical report will be referred as TU 

2362. The bridge is located over the river Luženka on the kilometer 25.938, with the 

following GPS coordinates 49 ° 14'28.2 "N, 18 ° 1'29.3" E, this bridge connects Horní Lideč 

(včetně) -Vsetín (včetně); The bridge data are: length 91.90 m, width 15.12 m, height of the 

bridge: 20.20 m, Bridging Length: 75.20 m, see [16]. This is a deck type truss bridge. 
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Figure 48. TU 2362 Bridge. Ref. [16] 

5.5.1. Geometry 

The bridge has a total length of 75.20 m and is divided in two sections 38.70 m formed by 

trusses supported on masonry pillars over the river bed, the year od manufacture was on 1937 

and repair and coat at the year 1992. All the original structure is made of angles and plates 

joined with rivets. The structure is made of steel, truss, rivet joints, ending of the truss 

perpendicular, the diagonals are made of angles. 

 Steel, bridge construction. Construction perpendicular. Elevation elemental, upper. 

 Construction length 38,70 m (MES), span 38,00 m (MES), width 5,15 m (MES 3,36 

m). 

 Main steel beams, riveted, trusses - basic system with vertices; height 4700 mm, 

lower belt widths up to 300 mm, axial distance 3000 mm. Longitudinal reinforcement 

of the main beams profiles L, bottom L 90x90x10 mm, upper L 100x100x12 mm. 

 Steel, full length, riveted I profiles, height 500 mm, belt width 250 mm, axial distance 

1800 mm. The longitudinal girders are mounted on the crossbars and fixed by bolts. 

 Longitudinal bracing steel profile sections T 200x100 mm. Transversal reinforcement 

of steel profiles U 220x80 mm. Rivet bindings. 

 Cross bars, ribbed, riveted I profiles, height 620 mm, width 250 mm, axial distance 

3800 mm, connections to hl. rivet beams. Transverse bracing of hl. beams from 

doubles steel profiles L 100x100x12 mm, rivet joints. Total height up to 4680 mm. 

 Structural bearing - bearing: Bearing Steel Bearings - initially movable three-roller, 

at the end solid fixed. 
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Production and construction year 1937 and repair 1992. Producer table on the object - 

Vitkovice Ironworks. PKO - 1982. 

         

 

Figure 49. Geometry of the TU 2362 bridge. Ref. [16] 

5.5.2. Group of connections  

On this present report it will be analyzed only the connections which are considered 

complicated to determinate its initial rotational stiffness. The characterization of joints helps 

on the analysis and data processing of the connections mas simplify the time of computing. 

In this work focuses on the connections in the deck which are divided in two groups: The 

connection between the main girder (or truss) with the cross beam; and the connections 

between cross beam with the stringer. On this bridge, it was important to define the initial 

stiffness on the connection between the main girder with the cross beam as it is showed on 

the graphic below. 
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Figure 50. Joint of interest on TU 2362. Bottom section of the truss on the supports. Ref. 

[16] 

 

Figure 51. Joint of interest on TU 2362. Upper section of the truss on the supports. Ref. 

[16] 
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6. CBFEM MODELING  

The modelling of the CBFEM models for all the bridges mentioned in the section 5 are made 

with steel plates, angles and bolts/riveted connections. The characterization and modeling of 

this bridges was made on the software IDEA StatiCa described in the section 3.3.1. The table 

(2) is a resume of the models with its characteristics. 

 

Table 2.  Resume of the CBFEM models 

6.1. Input data into the program 

Proprieties of material  

For Properties of materials, the Eurocode, see [5], recommends to apply the national codes 

for calculations purposes. In Czech applies Appendix A of the SŽDC SR5. (17), see [17]. 

For those bridges described before, taken the consideration the year of manufacture was used 

cast steel as a material. 

As it was described on the section 3.3, the real stress-strain diagram of steel is 

replaced by the ideal plastic material for design purposes in building practice the advantage 

of ideal plastic material is, that only yield strength and modulus of elasticity must be known 

to describe the material curve, see [15]. The figure (20) describes the real tension curve and 

the ideal elastic-plastic diagram of material used in this thesis.  

 

Characterization Type of connection
Height of the member 

analyzed (mm)

Section of 

reference

Libocany TU 502 semi through type truss bridge Cross Beam-stringer 430 5.1

Postoloprty TU 581 semi through type girder bridge. Main girder-cross beam 410 5.2

Postoloprty TU 581 semi through type girder bridge. Cross beam-Stringer 348 5.2

Kojetín TU 2101 through type truss bridge Main girder-cross beam 910 5.3

Kojetín TU 2101 through type truss bridge Main girder-cross beam 910 5.3

Kojetín TU 2101 through type truss bridge Cross Beam - stringer
 460 5.3

Kojetín TU 2101 through type truss bridge Cross Beam - stringer 683 5.3

Domašov nad Bystřicí TU 2191 deck type girder bridge Cross Beam - stringer
 320 5.4

Luzna TU 2362 deck type truss bridge. Cross Beam - stringer
 603 5.5

Luzna TU 2362 deck type truss bridge. Corner Upper
 250 5.5

Luzna TU 2362 deck type truss bridge. Corner lower
 250 5.5

Name 
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Table 3. Properties of Material. Ref. [17] 

 

Figure 52. Physical properties of the material. Ref. [15] 

Similarly, the rivet strength was considered in accordance with the Appendix A of the SŽDC 

SR5, see [16].  

 

Table 4. Properties of Material of the Rivets. Ref. [17] 

As it was described on the section 3.3, the bolt behavior is implemented according the 

figure (21) which describes bolts for interaction of shear and tension.  
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Figure 53. Physical properties of the bolts. Ref [15]. 

Loads applied 

The stiffness, according to the formulas on the Eurocode EN 1993-1-8, see [5], is a property 

of the material (elasticity modulus), the flexibility of each component (K coefficients) and 

the geometry (Inertia); and loading should not be a determinant condition. The loads for each 

connection were low, to ensure the behavior of the material is within the elastic range. For 

all the models the axial force was 2 kN, for My and Mz were 1 kNm.  

6.2. Output data from the program 

For the stiffness analysis, the programs provides the moment-rotation diagram, including the 

initial stiffness Sj,ini in light green, and the boundaries: pinned limit in blue, and rigid limit in 

yellow. 

This work is about to predicting a formula of the initial stiffness Sj based on the Inertia 

of the element. The bonders Sj,R and Sj,P  are according to EN 1993 1-8 with equations (1) and 

(2). 
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Figure 54. Rotational Stiffness provided from IDEA StatiCa. Ref. [15] 

 

Table 5. Description table of IDEA StatiCa. Ref. [15] 

6.3. Verification 

For the verification of this work, several alternatives models were taken into account to 

understand the operation of the program.  

There are three alternatives: the first models are created with the elements in its real 

dimensions and the elements don’t have any supported element which it means, they have 6 

degrees of freedom in the node: x, y, z, Mx, My, Mz.   
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Figure 55.TU 581 no fixed – long elements 

The second models are created with the short elements up to 40 cm and the elements 

don’t have any supported element which it means, they have 6 degrees of freedom in the 

node: x, y, z, Mx, My, Mz.  

 

Figure 56. TU 581 no fixed short 

The last models are created with the short up to 40 cm element and the elements on 

the extreme of the joint are fixed, it means, they have 0 degrees of freedom on de node:  x, 

y, z, Mx, My, Mz.  
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Figure 57.TU 581 fixed short 

The last alternative is used in the thesis; because the previous models were made only 

to validate the veracity of the program; and finally the previous studies are carried out in this 

way. 

 

Mj. Rd Sj. Ini Sj,R Sj, P Sjs

kNm MNm/rad MNm/rad MNm/rad MNm/rad

Short  connection 0 18.5 764.3 15.3 18.5

Long Connection 247.7 30.8 764.3 15.3 33.8

Short  connection 35.6 2 47.6 1 2.2

Long Connection 33.5 1.7 47.6 1 1.8

Mj. Rd Sj. Ini Sj,R Sj, P Sjs

kNm MNm/rad MNm/rad MNm/rad MNm/rad

Fixed  connection 562.5 35.4 468.3 9.4 35.7

No Fixed Connection 590.9 35.4 468.6 9.4 36.8

Fixed  connection 111.1 3.6 28 0.6 3.8

No Fixed Connection 111.1 3.6 28 0.6 3.8

Mj. Rd Sj. Ini Sj,R Sj, P Sjs Difference in %

kNm MNm/rad MNm/rad MNm/rad MNm/rad

Short  connection 594.5 53.1 468.6 9.4 56.7 -50%

Long Connection 562.5 35.4 468.3 9.4 35.7

Short  connection 110.5 8.8 28 0.6 9.6

Long Connection 111.1 3.6 28 0.6 3.8

TU 581, Main girder-Cross beam, 

Stiffness, fixed members

MY

Mz -144%

Mz 0%

Mz -18%

TU 581, Main girder-Cross beam, 

Stiffness, Long members
Difference in %

Rotational Stiffness

TU 502, Cross Beam - stringer, 

Stiffness Difference in %

MY 40%

MY 0%

Rotational Stiffness

Rotational Stiffness



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

 

63 

 

 

 

Mj. Rd Sj. Ini Sj,R Sj, P Sjs

kNm MNm/rad MNm/rad MNm/rad MNm/rad

MY Short  connection 154 3.9 331.2 6.6 0 Semi-Rigid

Mz Short  connection 68.2 4.3 30.5 0.6 6.2 Semi-Rigid

Mj. Rd Sj. Ini Sj,R Sj, P Sjs

kNm MNm/rad MNm/rad MNm/rad MNm/rad

Fixed  connection 3022.2 2014000000 3412.4 68.2 137700000

No Fixed Connection 3022.2 2014830000 3412.4 68.2 137766000

Fixed  connection 188.1 448.6 100.6 2 18409930

No Fixed Connection 186.1 488.6 100.6 2 18409930.2

Mj. Rd Sj. Ini Sj,R Sj, P Sjs

kNm MNm/rad MNm/rad MNm/rad MNm/rad

Short  connection 680.2 260.1 3412.4 68.2 266.5

Long Connection 3022.2 2014000000 3412.4 68.2 137700000

Short  connection 168 7.3 100.6 2 9.6

Long Connection 188.1 448.6 100.6 2 18409930

Rotational Stiffness

Rotational Stiffness

Rotational Stiffness

TU 581,Cross beam-Stringer, 

Stiffness, fixed members

TU 2101, Main girder-Cross 

beam, Stiffness, Long members

TU 2101, Main girder-Cross 

beam, Stiffness, Fixed members

MY 100%

Mz 98%

Mz 8%

Difference in %

Difference in %

MY 0%

Mj. Rd Sj. Ini Sj,R Sj, P Sjs

kNm MNm/rad MNm/rad MNm/rad MNm/rad

Fixed  connection 826.6 734.4 3412.4 68.2 920

No Fixed Connection 826.6 734.4 3412.4 68.2 920

Fixed  connection 234.7 156484402 100.6 2 18409930.2

No Fixed Connection 234.7 156484402 100.6 2 18409930

Mj. Rd Sj. Ini Sj,R Sj, P Sjs

kNm MNm/rad MNm/rad MNm/rad MNm/rad

Short  connection 559.7 210.5 3412.4 68.2 223.7

Long Connection 826.6 734.4 3412.4 68.2 920

Short  connection 188.7 26.9 100.6 2 27.4

Long Connection 234.7 156484402 100.6 2 18409930.2

Mj. Rd Sj. Ini Sj,R Sj, P Sjs

kNm MNm/rad MNm/rad MNm/rad MNm/rad

Short  connection 212.7 18.3 575.6 11.5 29.8

Long Connection 212.7 13.7 575.6 11.5 19.6

Short  connection 115.3 4 37.9 0.8 5.1

Long Connection 123.6 1.8 37.9 0.8 2

Rotational Stiffness

Rotational Stiffness

Rotational Stiffness

TU 2101, Main girder-Cross 

beam2, Stiffness, Long members

TU 2101, Main girder-Cross 

beam2, Stiffness, Fixed 

members

TU 2101, Cross Beam - stringer, 

Stiffness 

MY -34%

Mz -122%

Mz 100%

Difference in %

Difference in %

MY 71%

MY 0%

Mz 0%

Difference in %
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Table 6. Verification of the models 

After the analysis it is remarkable two data: the first one, the rotational Stiffness does not 

vary if an element is fixed at the end, nor some elements in the connection are fixed or not; 

because at the moment of analyzing rotational stiffness the program fixes the other elements 

and only leaves free the element of interest. The second and most important, is due to the 

length of the element analyzed, the difference varies by up to 100% and this is due to the 

program includes the rigidity of the element; adding the rigidity introduced, consequently it 

uses the rigidity in two occasions which causes a significant variation in the results. It is 

recommended to use short connections because the rigidity of the connection is taken into 

account once. 

Mj. Rd Sj. Ini Sj,R Sj, P Sjs

kNm MNm/rad MNm/rad MNm/rad MNm/rad

Short  connection 250.4 4.4 1718.5 34.4 15

Long Connection 109.9 13.8 1718.5 34.4 13.8

Short  connection 125.1 3 53.9 1.1 3.3

Long Connection 119.4 1.9 53.9 1.1 2

Mj. Rd Sj. Ini Sj,R Sj, P Sjs

kNm MNm/rad MNm/rad MNm/rad MNm/rad

Short  connection 100.3 2.5 395.4 7.9 13.9

Long Connection 92.9 4.4 395.4 7.9 9783015

Short  connection 39.4 26256963.2 8.2 0.2 2000000

Long Connection 37.9 25285509 8.2 0.2 2000000

Mj. Rd Sj. Ini Sj,R Sj, P Sjs

kNm MNm/rad MNm/rad MNm/rad MNm/rad

Short  connection 198.5 14.8 1101.5 22 220.6

Long Connection 197.1 15.2 1101.5 22 252.1

Short  connection 78.8 3.3 89 1.8 37.9

Long Connection 78.5 2.7 89 1.8 27.2

Rotational Stiffness

Rotational Stiffness

Rotational Stiffness

TU 2191, Cross Beam - stringer, 

Stiffness 

TU 2101, Cross Beam - stringer2, 

Stiffness 

Mz -22%

Difference in %

MY 3%

MY 43%

Mz -4%

TU 2362, Cross Beam - stringer, 

Stiffness 

Mz -58%

Difference in %

Difference in %

MY 68%

Mj. Rd Sj. Ini Sj,R Sj, P Sjs

kNm MNm/rad MNm/rad MNm/rad MNm/rad

Short  connection 188 76.7 66.3 1.3 91 Rigid

Short  connection 130.9 40.8 29.3 0.6 225.6 Rigid

Mj. Rd Sj. Ini Sj,R Sj, P Sjs

kNm MNm/rad MNm/rad MNm/rad MNm/rad

Short  connection 69.9 2.3 66.3 1.3 2.7 Semi-Rigid

Short  connection 118.1 78739181 29.3 0.6 5368580.6 Rigid
Mz

MY

Mz

Difference in %

MY

Difference in %

TU 2362 Corner Upper

TU 2362 Corner lower

Rotational Stiffness

Rotational Stiffness
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7. RESULTS 

Since, more data available enrich the database in order to obtain better results. The last two 

previous studies: O. Minor's master thesis (The Impact of the Connection Stiffness on the 

behavior of a Historical Steel Railway Bridge), see [2], and the SUDOP Study (The axial and 

rotational stiffness in the connections of a steel railway bridge, Tábor-Písek bridge), see [11], 

which serve as a starting point and reference for this present document, were considered into 

the analysis.    

7.1 Results of the CBFEM models  

The data from the CBFEM models are showed in the figure (60): 

 

Figure 58. Formula from CBFEM models. 

Sj = 4x10−8I − 8.7209    [MNm rad⁄ ]                                   (4) 

7.2 Results of the previous studies 

The Tábor-Písek bridge, truss bridge, presents the following data and provided the following 

formula, see [11]: 
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Figure 59. Formula from Tábor-Písek bridge. Ref. [11] 

Sj = 2x10−7I − 0.2311          [MNm rad⁄ ]                              (5) 

The bridge Pod Vyšehradem, truss bridge, presents the following data and provided the 

following Formula, see [2]: 

 

Figure 60.Formula from Vyšehradem bridge. Ref. [2] 

Sj = 4x10−7I − 3.7539      [MNm rad⁄ ]                                  (6) 
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7.3 Comparison between studies  

The figure (61) represents all data compared between them, it can be intuited that the 

relationship changes as the inertia increases. 

 

Figure 61. Compilation of the formulas 

 

Figure 62.  General compilation of the formulas 

Sj = 4x10−8I − 0.6495  [MNm rad⁄ ]                                          (4) 

The figure (62) shows how the relationship changes when the inertia increases, leaning 

slightly to the right. Through statistical analysis you can understand how inertia affects the 

rotational stiffness, therefore, the relationship is changing. 
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8. PREDICTION FORMULA EVALUATION 

In order to improve the data analysis due to their volume. It was used the curve of the gauss 

bell or a data’s normal distribution which is a graphic representation of the normal 

distribution in a group of data. These are distributed in low, medium and high values, creating 

a graph of bell shaped and symmetric with respect to a certain parameter. Obtaining this 

function is based on the least squares method, and tries to find the most likely values for X 

parameters based on N observations, taking into account the uncertainty introduced by the 

errors in the observations, see (18). 

After applying normal distribution analysis in all the data available. It was found 2 

big concentrations of data, therefor, two types of predictions regarding the Rotational 

Stiffness: the first are those sections with low rotational stiffness which in this case are: 

members in truss bridges and small profiles (marked in a red square on the figure (63)); and 

the second those sections with higher rotational stiffness which in this case are: big profiles, 

rigid connections between girder and cross beams, rigid connections between stringers and 

cross beams (marked in a green square on the figure (63)). 

 

 

Figure 63. Normal Distribution of all the data. 

After analyzing all the available data. It can be examined that 5 out of the 7 bridges, 

correspond to truss bridges, therefore, there are a predominance of connections in a truss 

bridge, so in the first group, the formula will suit better to a bridge with this characteristic. 

In the other hand, the second group will suit better with another formula. Both formulas will 



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

 

69 

 

be checked with the CBFEM models presented before in this thesis, in order to understand 

the behavior of them. The two groups are: 

1. Low rotational stiffness: Truss bridges and small profiles 

2. Higher rotational stiffness: big profiles, girder and cross beams cross beam. 

8.1. Low rotational stiffness: Truss bridges and small profiles 

The highest concentration of data is found for values less than 30 MNm/rad on the Rotational 

Stiffness value of the curve of the distribution, the values greater than this number are not 

representative on truss, therefore, they are excluded from the prediction but the values of the 

cases of study of this document for girder bridges are preserved to measure their behavior, in 

order to compared them. 

 

Figure 64. Normal Distribution of the data of the elements with low Inertia. 

It can be found the first formula of interest from the linear relationship of the 

rotational stiffness (Sj) and the value of inertia (I) of the analyzed section.  
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Figure 65. Prediction of the first formula with small rotation stiffness 

Sj = 2x10−7I − 2.7436 [MNm rad⁄ ]                                     (5) 

𝑅2 = 0.3501 

Where; 

Sj Rotational Stiffness in MNm/rad 

I Inertia in mm4 ≤ 30 [𝑀𝑁𝑚 𝑟𝑎𝑑⁄ ] 

R2 The dependence of the variable Sj over the value I 

The average percentage error between the computational value of the rotational Stiffness and 

the value obtained by the formula, varies by 62%. On this first formula of interest (8). The 

value of R2   indicates a positive correlation between the two variables. It means, when one 

value depends of the other one, so, when the Inertia Increases the Rotational Stiffness also 

increases.   

 

8.2. Higher rotational stiffness: big profiles, girder and cross beams cross beam. 

A different analysis was done for higher rotational stiffness, where the small inertia values 

were eliminated. It brings a new normal distribution curve, figure (66). 
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Figure 66.  Normal Distribution for higher Sj 

It can be appreciated that the highest concentration of data is found for values less than 100 

MNm/rad on the Rotational Stiffness value. Hence, in this curve there are almost all values 

within it. 

 

Figure 67. Prediction formula with high rotation stiffness 

Sj = 4x10−8I − 31.012  [MNm rad⁄ ]                                    (9) 

𝑅2 = 0.6739 
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Where; 

Sj Rotational Stiffness in MNm/rad 

I Inertia in mm4≥ 30 [𝑀𝑁𝑚 𝑟𝑎𝑑⁄ ] 

R2 The dependence of the variable Sj over the value I 

The average percentage error between the computational value of the rotational Stiffness and 

the value obtained by the formula, varies by 213%.  The second formula of interest (9) is 

similar to the one obtained in the beam bridges, therefore, it fits well with the analysis carried 

out in this document. 

The value of R2   indicates a positive correlation between the two variables. It means, 

when one value depends of the other one, so, when the Inertia Increases the Rotational 

Stiffness also increases.   

Although the value is not as accurate at It would be expected but it provides a better 

understanding of the connection. As it was mention before in this thesis, for the designing of 

riveted connections it was assumed that the connections were pinned (Hinge) or fixed (rigid). 

These formulas bring a new possibility, semi rigid connection, in order to save time doing 

analysis to obtain a value of the rotational stiffness. 

 

8.3. Boundaries of the formulas 

As it was mention before, every formula should be used for a different type of riveted 

connection depending of the rotational stiffness. Since, the formulas of the rotational stiffness 

depend of the inertia and at the same time the inertia depends of the profile´s height, it can 

be determinate a steel profile with a specific cross section which could be used as a boundary 

between the two formulas.   

This value is obtained by using the inertia parallel axes theorem, equation (10). 

Replacing the value of 30 MNm/rad as rotational stiffness (Sj) on the first formula (8), it 

results in a determined inertial value (I = 151371800 mm4). In order to calculate the cross 

section of the profile the flanges area is assumed and calculated from elements of 100 mm 

base x 10 mm high (these flange measurements were the most usual in this connections).  

bh3

12
+ 2Ad ≤  I                                                          (10) 
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I ≤  151371800 mm4 

Since, it is an estimate value. 

2𝑑 ≈ ℎ 

Replacing d by h. 

bh3

12
+ 4Ah ≤  151371800      (11) 

Solving the equation. 

ℎ ≤  566.33 𝑚𝑚 

For the first formula the range of the cross section’s height goes from 0 mm to 550 mm and 

for the second formula is until 900 mm because it was the maximum cross section analyzed 

in this thesis. 

 

8.4. Final formulas 

The final formula riveted connections in truss bridges and profiles less than 550 mm height 

is:  

Sj = 2x10−7I − 2.7436 [MNm rad⁄ ]                                   (8) 

Where; 

Sj Rotational Stiffness in MNm/rad 

I Inertia in mm4 

R2 The dependence of the variable Sj over the value I 

The final formula riveted connections in girder bridges and profiles more than 550 mm 

until 900 mm height is:  

Sj = 4x10−8I − 31.012 [MNm rad⁄ ]                                  (96) 

Where; 

Sj Rotational Stiffness in MNm/rad 

I Inertia in mm4 

R2 The dependence of the variable Sj over the value I 



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

 

74 

 

In the figure (68) it can be appreciating the different slopes of the formulas and it shows how 

the relationship changes when the inertia increases, leaning slightly to the right. For both 

cases it is a liner relationship with a positive slop between the Inertia and the Rotational 

stiffness.  

The boundaries for both formulas are:  

X= 𝐼 = 151371800 mm4 

Y= Sj = 30 MNm/rad 

 

Figure 68.  Boundaries of the final formulas 

 

8.5. Comparison the two formulas with the CBFEM models 

It is interesting to analyze the two formulas with the computational value of the Sj in the 

bridges in this study, the values change significantly depending of the bridge 

characterization. 

The table (7) and (8) are organized as follows: 

On the first chart: Type of bridge, notation assigned, type of connection and height of the 

element analyzed. Subsequently the inertia of the analyzed section, the Rotational Stiffness 
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obtained with IDEA StatiCa, the Rotational Stiffness obtained with the formula and finally 

the percentage of error between the theoretical and the computational value. 

8.5.1. Case 1: First formula  

It is described on the following table: 

 

Table 7. Comparison of the first formula with cases of study 

First impressions are: as expected, profiles with a high web do not fit on the prediction. 

Second, the connections Cross beam - Stringer where the Stringer is over the Cross 

beam does not correspond with the prediction. Figure (69). 

 

 

Figure 69. Example on the TU 581 bridge. 

I S j S j (formula)

mm4 MNm/rad MNm/rad

Beam-TU 502, Cross Beam - stringer, h=430mm
 1 3.49E+08 18.5 72.6196 293%

beam-TU 581, Main girder-Cross beam, h=410mm 2 3.39E+08 53.1 70.5396 33%

up- TU 581,Cross beam-Stringer, h=348mm 3 2.4E+08 3.9 50.6836 1200%

big-TU 2101, Main girder-Cross beam, h=910mm 4 5.56E+09 260.1 1114.0736 328%

big-TU 2101, Main girder-Cross beam2, h=910mm 5 5.56E+09 210.5 1114.0736 429%

within-TU 2101, Cross Beam - stringer, h=460mm
 6 6.58E+08 18.3 134.3156 634%

within- TU 2101, Cross Beam - stringer2, h=683mm
 7 1.33E+09 4.4 268.5436 6003%

up-TU 2191, Cross Beam - stringer, h=320mm
 8 1.64E+08 2.5 35.5476 1322%

Truss- TU 2362, Cross Beam - stringer, h=603mm
 9 1E+08 14.8 22.7696 54%

Truss- TU 2362 Corner Upper, configuration 238,250
 10 59388000 76.7 14.6212 81%

truss- TU 2362 Corner lower, configuration 238,250
 11 59388000 2.3 14.6212 536%

Error %#Comparison of the first formula with the cases of study

Diferent 

Bridges 
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Third, the connections Cross beam - Stringer where the Stringer is within the Cross beam 

does not correspond with the prediction. For this case can be analyzed the rotational Stiffness 

of the connection depending on the number of rivets. Figure (70). 

 

Figure 70.  Example on the TU 2101 bridge. 

And the last two connections have a different configuration of an IPE profile, so they do 

not fit on the prediction. Figure (71). 

 

 
Figure 71. Non IPE profiles. 
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In general, on the analyzed bridges those profiles have a higher height on their web so they 

do not fit very well to this formula. 

 

8.5.2. Case 2: Second formula 

It is described on the following table: 

 

Table 8. Comparison of the second formula with cases of study 

The first impressions are: as expected, the profiles with a low web do not fit on the prediction. 

Second, for both cases the connections Cross beam- Stringer where the Stringer is 

over the Cross beam does not correspond with the prediction. Figure (72). 

 

 

Figure 72.  Example on the TU 2191 Bridge. 

In general, this formula is coupled much greater range of bridges regardless of their 

characterization except for the cases listed above. 

I S j S j (formula)

mm4 MNm/rad MNm/rad

Beam-TU 502, Cross Beam - stringer, h=430mm
 1 3.49E+08 18.5 44.9872 143%

beam-TU 581, Main girder-Cross beam, h=410mm 2 3.39E+08 53.1 44.5712 16%

up- TU 581,Cross beam-Stringer, h=348mm 3 2.4E+08 3.9 40.6 941%

big-TU 2101, Main girder-Cross beam, h=910mm 4 5.56E+09 260.1 253.278 3%

big-TU 2101, Main girder-Cross beam2, h=910mm 5 5.56E+09 210.5 253.278 20%

within-TU 2101, Cross Beam - stringer, h=460mm
 6 6.58E+08 18.3 57.3264 213%

within- TU 2101, Cross Beam - stringer2, h=683mm
 7 1.33E+09 4.4 84.172 1813%

up-TU 2191, Cross Beam - stringer, h=320mm
 8 1.64E+08 2.5 37.5728 1403%

Truss- TU 2362, Cross Beam - stringer, h=603mm
 9 1E+08 14.8 35.0172 137%

Truss- TU 2362 Corner Upper, configuration 238,250
 10 59388000 76.7 33.38752 56%

truss- TU 2362 Corner lower, configuration 238,250
 11 59388000 2.3 33.38752 1352%

Comparison of the second formula with the cases of study # Error %

Diferent 

Bridges 
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8.5.3. Comparison with other formulas 

In this study, emphasis has been made on comparing with the previous formulas proposed by 

similar studies, in order to provide a better understanding. 

8.5.3.1. Comparison with First formula 

Comparting the average percentage error with the first formula. Annex 13 

Formula % Error 

Tabok - Pisek 54% 

Minor´s Thesis 134% 

Present Study 62% 

Table 9. Comparison the average percentage error with the first formula 

Also, the first and the third formula are very similar, this is obvious when most of the data 

come from the study of Tabok-Pisek bridges, see [13], and it adapts well to connections in 

truss bridges with lower moment of inertia or less than 550 mm high.  

8.5.3.2. Comparison with Second formula 

The formulas of the two previous studies do not fit in connections with biggest moment of 

inertia. Which makes sense, the elements which conform Truss bridges are relative small, 

therefore, the proposed formula is better suited to connections with profiles greater than 550 

mm and even other types of bridges such as Girder Bridges.  Annex (14). 

Formula % Error 

Tabok - Pisek 392% 

Minor´s Thesis 826% 

Present Study 213% 

Table 10. Comparison the average percentage error with the second formula 
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9. CONCLUSIONS  

The aim of the thesis was to evaluate the relationship between the rotational stiffness and the 

moment of inertia in connections on different riveted steel railway bridges.  

The results of 3D CBFEM models were used for the evaluation of the predictive 

formula. Two different formulas were created, first for the low rotational stiffness and second 

for the higher rotational stiffness. Together they form the bilinear curve with the internal 

boundary at the rotation stiffness of 30 MNm/rad and the second group with the rotational 

stiffness value between 30 MNm/rad and 100 MNm/rad.  

The average percentage error of the two formulas described in Oscar Minor's thesis. 

see [2], compared with the formulas obtained in this present thesis have a higher average 

percentage error for both cases. This fact, inclines to think that this formula is a little more 

accurate and delivers more precise values. However, it is important to remember that the 

average percentage error for the first formula is 62% for profiles less than 550 mm in height 

and 213% for profiles greater than 550 mm according to the obtained formula, with a value 

of R2 of 0.3501 and 0.6739 respectively, which indicates the correlation between the two 

variables. 

Therefore, it is recommended to use these formulas to save calculation time for semi-

rigid connections in riveted bridges with adequate safety coefficients, taking into account the 

error values previously mentioned. However, compared to the existing design praxis, where 

the designer use hinge or rigid connection only, this predictive formula significantly 

improves the precision of the global numerical models.  
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ANNEXES 

Annex 1: Results provided for the program IDEA StatiCa of the connection: TU502. Here is 

described the load effects which are input on the program, the moment of inertia of the element 

analyzed, the initial rotational stiffness with its boundaries to rigid and pined connection, the initial 

rotation, the class of the connection: Pinned, Rigid, semi-rigid and the axial stiffness 

 

 

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 349380000 0 349380000

2 0 0 0 1 0 Iz 16131000 0 16131000

Cross beam - stringer 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

0 18.5 0.1 30.2 2.1 764.3 15.3 18.5 semi-rigid N 2 0 0 126

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 349380000 0 349380000

2 0 0 0 1 0 Iz 16131000 0 16131000

Cross beam - stringer 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

247.7 30.8 0 50.9 2.4 764.3 15.3 33.8 semi-rigid N 2 1.8 0 2000000

Comp.

Name:

Type:

Analysis:

comment:

Load effects 

Short connection

Class

Rotational Stiffness

TU 502

My 

Stiffness 

Axial stiffness

Moment of inertia 

Type: My 

Name: TU 502 Load effects Moment of inertia 

Analysis: Stiffness 

comment: Long connection

Rotational Stiffness Axial stiffness

Class Comp.

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 349380000 0 349380000

2 0 0 0 1 0 Iz 16131000 0 16131000

Cross beam - stringer 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

0 18.5 0.1 30.2 2.1 764.3 15.3 18.5 semi-rigid N 2 0 0 126

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 349380000 0 349380000

2 0 0 0 1 0 Iz 16131000 0 16131000

Cross beam - stringer 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

247.7 30.8 0 50.9 2.4 764.3 15.3 33.8 semi-rigid N 2 1.8 0 2000000

Comp.

Name:

Type:

Analysis:

comment:

Load effects 

Short connection

Class

Rotational Stiffness

TU 502

My 

Stiffness 

Axial stiffness

Moment of inertia 

Type: My 

Name: TU 502 Load effects Moment of inertia 

Analysis: Stiffness 

comment: Long connection

Rotational Stiffness Axial stiffness

Class Comp.



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

 

83 

 

Annex 2: Results provided for the program IDEA StatiCa of the connection: TU581. Here is 

described the load effects which are input on the program, the moment of inertia of the element 

analyzed, the initial rotational stiffness with its boundaries to rigid and pined connection, the initial 

rotation, the class of the connection: Pinned, Rigid, semi-rigid and the axial stiffness.  

 

 

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 338980000 0 3.39E+08

2 0 0 0 2 0 Iz 20269000 0 20269000

Main Girder- Cross beam  no fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

590.9 35.4 0.1 29.6 3.6 468.6 9.4 36.8 semi-rigid N 2 3.5 0 1230

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

2 0 0 0 -2 0

Main Girder- Cross beam  fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

562.5 35.4 0.1 24.4 3.8 468.3 9.4 35.7 semi-rigid N 2 3.3 0 960

Type: My 

Name: TU 581 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU 581 Load effects Moment of inertia 

Analysis: Stiffness 

comment: Long connection

Rotational Stiffness Axial stiffness

Class Comp.

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 338980000 0 3.39E+08

2 0 0 0 2 0 Iz 20269000 0 20269000

Main Girder- Cross beam  no fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

590.9 35.4 0.1 29.6 3.6 468.6 9.4 36.8 semi-rigid N 2 3.5 0 1230

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

2 0 0 0 -2 0

Main Girder- Cross beam  fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

562.5 35.4 0.1 24.4 3.8 468.3 9.4 35.7 semi-rigid N 2 3.3 0 960

Type: My 

Name: TU 581 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU 581 Load effects Moment of inertia 

Analysis: Stiffness 

comment: Long connection

Rotational Stiffness Axial stiffness

Class Comp.
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Main girder- cross beam. Fixed connection.  

 

 

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

2 0 0 0 2 0

Main Girder- Cross beam no fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

594.5 53.1 0 24.5 3.8 468.6 9.4 56.7 semi-rigid N 2 3.5 0 1824

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

2 0 0 0 2 0

Main Girder- Cross beam fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

594.5 53.1 0 24.5 3.8 468.6 9.4 56.7 semi-rigid N 2 3.5 0 2031

comment: Short connection

Analysis: Stiffness 

Rotational Stiffness Axial stiffness

Type: My 

Name: TU 581 Load effects Moment of inertia 

Class Comp.

Type: My 

Name: TU 581 Load effects Moment of inertia 

Class Comp.

Analysis: Stiffness 

comment: Short connection

Rotational Stiffness Axial stiffness

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

2 0 0 0 2 0

Main Girder- Cross beam no fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

594.5 53.1 0 24.5 3.8 468.6 9.4 56.7 semi-rigid N 2 3.5 0 1824

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

2 0 0 0 2 0

Main Girder- Cross beam fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

594.5 53.1 0 24.5 3.8 468.6 9.4 56.7 semi-rigid N 2 3.5 0 2031

comment: Short connection

Analysis: Stiffness 

Rotational Stiffness Axial stiffness

Type: My 

Name: TU 581 Load effects Moment of inertia 

Class Comp.

Type: My 

Name: TU 581 Load effects Moment of inertia 

Class Comp.

Analysis: Stiffness 

comment: Short connection

Rotational Stiffness Axial stiffness
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Annex 3: Results provided for the program IDEA StatiCa of the connection: TU581. Here is 

described the load effects which are input on the program, the moment of inertia of the element 

analyzed, the initial rotational stiffness with its boundaries to rigid and pined connection, the initial 

rotation, the class of the connection: Pinned, Rigid, semi-rigid and the axial stiffness. 

 

 

 

 

 

 

 

 

 

 

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 239700000 0 2.4E+08

1 0 0 0 2 0 Iz 22049000 0 22049000

 Cross beam - Stringer   fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

154 3.9 0.2 74.2 3.8 331.2 6.6 0 Pinned N 1 0.6 0 53

Type: My 

Name: TU 581 Load effects Moment of inertia 

Analysis: Stiffness 

Rotational Stiffness Axial stiffness

comment: short connection

Class Comp.
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Annex 4: Results provided for the program IDEA StatiCa of the connection: TU2101. Here is 

described the load effects which are input on the program, the moment of inertia of the element 

analyzed, the initial rotational stiffness with its boundaries to rigid and pined connection, the initial 

rotation, the class of the connection: Pinned, Rigid, semi-rigid and the axial stiffness. 

 

 

 

 

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 3899900000 1656750000 5556650000

1 0 0 0 2 0 Iz 114920000 30720000 145640000

Main Girder- Cross beam  no fixed

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

3022.2 2014830000 0 0 6 3412.4 68.2 137766000 Rigid N 1 1.8 0 1000000

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

1 0 0 0 2 0

Main Girder- Cross beam  fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

3022.2 2014000000 0 0 6 3412.4 68.2 137700000 Rigid N 1 1.8 0 1000000

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

1 0 0 0 2 0

Main Girder- Cross beam fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

680.2 260.1 0 5.5 6 3412.4 68.2 266.5 semi-rigid N 1 0.4 0 1000000

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU 581 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Short connection
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Short connection.  

 

 

 

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 3899900000 1656750000 5556650000

1 0 0 0 2 0 Iz 114920000 30720000 145640000

Main Girder- Cross beam  no fixed

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

3022.2 2014830000 0 0 6 3412.4 68.2 137766000 Rigid N 1 1.8 0 1000000

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

1 0 0 0 2 0

Main Girder- Cross beam  fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

3022.2 2014000000 0 0 6 3412.4 68.2 137700000 Rigid N 1 1.8 0 1000000

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

1 0 0 0 2 0

Main Girder- Cross beam fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

680.2 260.1 0 5.5 6 3412.4 68.2 266.5 semi-rigid N 1 0.4 0 1000000

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU 581 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Short connection

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 3899900000 1656750000 5556650000

1 0 0 0 2 0 Iz 114920000 30720000 145640000

Main Girder- Cross beam  no fixed

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

3022.2 2014830000 0 0 6 3412.4 68.2 137766000 Rigid N 1 1.8 0 1000000

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

1 0 0 0 2 0

Main Girder- Cross beam  fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

3022.2 2014000000 0 0 6 3412.4 68.2 137700000 Rigid N 1 1.8 0 1000000

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

1 0 0 0 2 0

Main Girder- Cross beam fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

680.2 260.1 0 5.5 6 3412.4 68.2 266.5 semi-rigid N 1 0.4 0 1000000

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU 581 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Short connection
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Annex 5: Results provided for the program IDEA StatiCa of the connection: TU2101. Here is 

described the load effects which are input on the program, the moment of inertia of the element 

analyzed, the initial rotational stiffness with its boundaries to rigid and pined connection, the initial 

rotation, the class of the connection: Pinned, Rigid, semi-rigid and the axial stiffness. 

 

 

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 3.9E+09 1.66E+09 5556650000

1 0 0 0 2 0 Iz 1.15E+08 30720000 145640000

Main Girder- Cross beam  no fixed

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

826.6 734.4 0 4 6 3412.4 68.2 920 Semi-Rigid N 1 0.5 0 1000000

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

1 0 0 0 2 0

Main Girder- Cross beam  fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

826.6 734.4 0 4 6 3412.4 68.2 920 Semi-Rigid N 1 0.5 0 1000000

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

1 0 0 0 2 0

Main Girder- Cross beam fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

559.7 210.5 0 6.2 6 3412.4 68.2 223.7 semi-rigid N 1 0.3 0 1000000

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU 581 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Short connection
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Short Connection 

 

 

 

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 3.9E+09 1.66E+09 5556650000

1 0 0 0 2 0 Iz 1.15E+08 30720000 145640000

Main Girder- Cross beam  no fixed

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

826.6 734.4 0 4 6 3412.4 68.2 920 Semi-Rigid N 1 0.5 0 1000000

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

1 0 0 0 2 0

Main Girder- Cross beam  fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

826.6 734.4 0 4 6 3412.4 68.2 920 Semi-Rigid N 1 0.5 0 1000000

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

1 0 0 0 2 0

Main Girder- Cross beam fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

559.7 210.5 0 6.2 6 3412.4 68.2 223.7 semi-rigid N 1 0.3 0 1000000

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU 581 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Short connection

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 3.9E+09 1.66E+09 5556650000

1 0 0 0 2 0 Iz 1.15E+08 30720000 145640000

Main Girder- Cross beam  no fixed

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

826.6 734.4 0 4 6 3412.4 68.2 920 Semi-Rigid N 1 0.5 0 1000000

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

1 0 0 0 2 0

Main Girder- Cross beam  fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

826.6 734.4 0 4 6 3412.4 68.2 920 Semi-Rigid N 1 0.5 0 1000000

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

1 0 0 0 2 0

Main Girder- Cross beam fixed 

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

559.7 210.5 0 6.2 6 3412.4 68.2 223.7 semi-rigid N 1 0.3 0 1000000

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU 581 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Short connection
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Annex 6: Results provided for the program IDEA StatiCa of the connection: TU2101. Here is 

described the load effects which are input on the program, the moment of inertia of the element 

analyzed, the initial rotational stiffness with its boundaries to rigid and pined connection, the initial 

rotation, the class of the connection: Pinned, Rigid, semi-rigid and the axial stiffness. 

 

 

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 657860000 0 6.58E+08

2 0 0 0 1 0 Iz 43328000 0 43328000

 Cross beam- Stringer

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

212.7 13.7 0.1 219.3 6 575.6 11.5 19.6 Semi-rigid N 2 0.7 0 228

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

2 0 0 0 1 0

Cross beam - Stringer

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

212.7 18.3 0 214.9 6 575.6 11.5 29.8 Semi-Rigid N 2 0.7 0 271

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: short connection

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 657860000 0 6.58E+08

2 0 0 0 1 0 Iz 43328000 0 43328000

 Cross beam- Stringer

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

212.7 13.7 0.1 219.3 6 575.6 11.5 19.6 Semi-rigid N 2 0.7 0 228

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

2 0 0 0 1 0

Cross beam - Stringer

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

212.7 18.3 0 214.9 6 575.6 11.5 29.8 Semi-Rigid N 2 0.7 0 271

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: short connection
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Annex 7: Results provided for the program IDEA StatiCa of the connection: TU2101. Here 

is described the load effects which are input on the program, the moment of inertia of the element 

analyzed, the initial rotational stiffness with its boundaries to rigid and pined connection, the initial 

rotation, the class of the connection: Pinned, Rigid, semi-rigid and the axial stiffness. 

 

 

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 1329000000 0 1.33E+09

1 0 0 0 2 0 Iz 260650000 0 2.61E+08

 Cross beam- Stringer

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

109.9 13.8 0.1 21 6 1718.5 34.4 13.8 Pinned N 1 0.1 0 385

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

1 0 0 0 2 0

Cross beam - Stringer

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

250.4 4.4 0.1 3734.8 6 1718.5 34.4 15 Pinned N 1 0.2 0 496

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: short connection

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 1329000000 0 1.33E+09

1 0 0 0 2 0 Iz 260650000 0 2.61E+08

 Cross beam- Stringer

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

109.9 13.8 0.1 21 6 1718.5 34.4 13.8 Pinned N 1 0.1 0 385

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

1 0 0 0 2 0

Cross beam - Stringer

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

250.4 4.4 0.1 3734.8 6 1718.5 34.4 15 Pinned N 1 0.2 0 496

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: short connection
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Annex 8: Results provided for the program IDEA StatiCa of the connection: TU2101. Here is 

described the load effects which are input on the program, the moment of inertia of the element 

analyzed, the initial rotational stiffness with its boundaries to rigid and pined connection, the initial 

rotation, the class of the connection: Pinned, Rigid, semi-rigid and the axial stiffness. 

 

 

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 164020000 0 164020000

1 0 0 0 2 0 Iz 14727000 0 14727000

 Cross beam- Stringer

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

92.9 4.4 0 113.6 1.5 395.4 7.9 9783015 Pinned N 1 0.8 0 1000000

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

1 0 0 0 2 0

Cross beam - Stringer

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

100.3 2.5 0.1 281.6 1.5 395.4 7.9 13.9 Pinned N 1 0.9 0 1000000

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: short connection

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 164020000 0 164020000

1 0 0 0 2 0 Iz 14727000 0 14727000

 Cross beam- Stringer

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

92.9 4.4 0 113.6 1.5 395.4 7.9 9783015 Pinned N 1 0.8 0 1000000

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

1 0 0 0 2 0

Cross beam - Stringer

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

100.3 2.5 0.1 281.6 1.5 395.4 7.9 13.9 Pinned N 1 0.9 0 1000000

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My 

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: short connection
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Annex 9: Results provided for the program IDEA StatiCa of the connection: TU2101. Here is 

described the load effects which are input on the program, the moment of inertia of the element 

analyzed, the initial rotational stiffness with its boundaries to rigid and pined connection, the initial 

rotation, the class of the connection: Pinned, Rigid, semi-rigid and the axial stiffness. 

 

 

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 1001300000 0 1E+09

10 0 0 0 2 0 Iz 43702000 0 43702000

Main Girder- Cross beam

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

197.1 15.2 0 13.1 3.8 1101.5 22 252.1 Semi-Rigid N 10 9.2 0 1000000

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

10 0 0 0 2 0

Main Girder- Cross beam

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

198.5 14.8 0 14.3 3.8 1101.5 22 220.6 Pinned N 10 0.2 0 10000000

Type: My

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: short connection

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 1001300000 0 1E+09

10 0 0 0 2 0 Iz 43702000 0 43702000

Main Girder- Cross beam

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

197.1 15.2 0 13.1 3.8 1101.5 22 252.1 Semi-Rigid N 10 9.2 0 1000000

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm

10 0 0 0 2 0

Main Girder- Cross beam

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

198.5 14.8 0 14.3 3.8 1101.5 22 220.6 Pinned N 10 0.2 0 10000000

Type: My

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: Long connection

Type: My

Name: TU2101 Load effects Moment of inertia 

Rotational Stiffness Axial stiffness

Class Comp.

Analysis: Stiffness 

comment: short connection
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Annex 10: Results provided for the program IDEA StatiCa of the connection: TU2362. Here is 

described the load effects which are input on the program, the moment of inertia of the element 

analyzed, the initial rotational stiffness with its boundaries to rigid and pined connection, the initial 

rotation, the class of the connection: Pinned, Rigid, semi-rigid and the axial stiffness. 

 

 

 

 

 

 

 

 

 

 

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 59388000 0 59388000

-1 0 0 0 0 2 Iz 26240000 0 26240000

Upper corner connection

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

130.9 40.8 0 567 4.7 29.3 0.6 225.6 Rigid N -1 -2 0 1000000

Type: Mz

Name: TU2362 Load effects Moment of inertia 

Analysis: Stiffness 

comment: short connection

Rotational Stiffness Axial stiffness

Class Comp.
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Annex 11. Here is described the load effects which are input on the program, the moment of inertia 

of the element analyzed, the initial rotational stiffness with its boundaries to rigid and pined 

connection, the initial rotation, the class of the connection: Pinned, Rigid, semi-rigid and the axial 

stiffness. 

 

 

 

 

 

 

 

 

 

N Vy Vz Mx My Mz mm4

kN kN kN kNm kNm kNm Iy 59388000 0 59388000

-1 0 0 0 0 2 Iz 26240000 0 26240000

Lower corner connection

Mj. Rd Sj. Ini φ φc L Sj,R Sj, P Sjs N Nj, Rd dx St

kNm MNm/rad mrad mrad m MNm/rad MNm/rad MNm/rad kN kN mm MN/m

118.1 78739181 0 115.8 4.7 29.3 0.6 5368580.6 Rigid N -1 -1.8 0 1000000

Type: Mz

Name: TU2362 Load effects Moment of inertia 

Analysis: Stiffness 

comment: short connection

Rotational Stiffness Axial stiffness

Class Comp.
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Annex 12: Comparison the average percentage error between formulas obtained on the different 

studies for all the profiles. General formula  

  

All data I Sj Sj tabor-Pisek Sj Oscar Sj Marcos

mm4 MNm/rad Mnm/rad Mnm/rad Mnm/rad %

1 349380000 18.5 70.30                   280% 136.00        635% 22.70      23%

2 338980000 53.1 68.22                   28% 131.84        148% 22.28      58%

3 239700000 3.9 48.36                   1140% 92.13          2262% 18.31      369%

4 5556650000 260.1 1 111.75              327% 2 218.91     753% 230.99    11%

5 5556650000 210.5 1 111.75              428% 2 218.91     954% 230.99    10%

6 657860000 18.3 131.99                 621% 259.39        1317% 35.04      91%

7 1329000000 4.4 266.22                 5950% 527.85        11897% 61.88      1306%

8 164020000 2.5 33.22                   1229% 61.85          2374% 15.28      511%

9 100130000 14.8 20.45                   38% 36.30          145% 12.73      14%

10 59388000 76.7 12.30                   84% 20.00          74% 11.10      86%

11 59388000 2.3 12.30                   435% 20.00          770% 11.10      382%

1 232355208 75.256 46.89                   38% 89.19          19% 18.02      76%

2 313293874.7 111.8 63.08                   44% 121.56        9% 21.25      81%

3 232355208 81.028 46.89                   42% 89.19          10% 18.02      78%

4 171843208 71.464 34.79                   51% 64.98          9% 15.59      78%

5 171843208 27.471 34.79                   27% 64.98          137% 15.59      43%

6 122189141.3 47.112 24.86                   47% 45.12          4% 13.61      71%

7 51341866.67 9.724 10.69                   10% 16.78          73% 10.77      11%

8 6481237.333 1.192 1.72                      44% (1.16)           197% 8.98         653%

9 6481237.333 1.486 1.72                      15% (1.16)           178% 8.98         504%

1 1.40E+08 68.6 28.38                   59% 52.16          24% 14.31      79%

2 2.13E+08 26.2 42.95                   64% 81.30          210% 17.23      34%

4 1.82E+08 10.7 36.84                   244% 69.08          546% 16.00      50%

5 3.70E+07 1.8 7.82                      335% 11.05          514% 10.20      467%

7 8.66E+07 12 17.74                   48% 30.89          157% 12.18      2%

8 1.33E+08 19.1 27.08                   42% 49.56          159% 14.05      26%

9 6.15E+06 3.5 1.65                      53% (1.29)           137% 8.97         156%

10 1.82E+08 10.7 36.84                   244% 69.08          546% 16.00      50%

11 3.70E+07 1.8 7.82                      335% 11.05          514% 10.20      467%

13 5.49E+07 13.2 11.40                   14% 18.21          38% 10.92      17%

14 9.17E+07 17.9 18.76                   5% 32.92          84% 12.39      31%

15 6.15E+06 3.5 1.65                      53% (1.29)           137% 8.97         156%

17 4.28E+07 10.5 8.98                      14% 13.37          27% 10.43      1%

18 3.70E+07 9.7 7.82                      19% 11.05          14% 10.20      5%

19 6.15E+06 3.45 1.65                      52% (1.29)           137% 8.97         160%

21 3.00E+07 6.3 6.42                      2% 8.24             31% 9.92         57%

22 3.00E+07 7.6 6.42                      16% 8.24             8% 9.92         31%

23 6.15E+06 3.45 1.65                      52% (1.29)           137% 8.97         160%

25 3.27E+07 7.5 6.95                      7% 9.31             24% 10.03      34%

26 4.28E+07 12.1 8.98                      26% 13.37          11% 10.43      14%

27 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

29 9.17E+07 14.8 18.76                   27% 32.92          122% 12.39      16%

30 4.57E+07 13.7 9.56                      30% 14.53          6% 10.55      23%

31 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

33 1.28E+08 14.9 26.01                   75% 47.43          218% 13.84      7%

34 7.40E+07 16.4 15.22                   7% 25.86          58% 11.68      29%

35 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

37 1.73E+08 14.7 35.01                   138% 65.43          345% 15.64      6%

38 1.04E+08 18.3 21.17                   16% 37.76          106% 12.87      30%

39 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

41 2.16E+08 39.7 43.62                   10% 82.65          108% 17.36      56%

42 1.77E+08 27 35.79                   33% 66.98          148% 15.79      42%

43 6.15E+06 3.1 1.65                      47% (1.29)           142% 8.97         189%

45 4.04E+08 89 81.31                   9% 158.03        78% 24.90      72%

46 4.04E+08 96.8 81.31                   16% 158.03        63% 24.90      74%

50 1.21E+08 20 24.66                   23% 44.72          124% 13.57      32%

51 1.81E+08 21.3 36.70                   72% 68.82          223% 15.98      25%

52 6.15E+06 3.1 1.65                      47% (1.29)           142% 8.97         189%

54 7.40E+07 11.8 15.22                   29% 25.86          119% 11.68      1%

55 1.23E+08 16.2 25.09                   55% 45.59          181% 13.66      16%

56 6.15E+06 3.1 1.65                      47% (1.29)           142% 8.97         189%

58 5.49E+07 7.8 11.40                   46% 18.21          133% 10.92      40%

61 7.35E+07 7.6 15.13                   99% 25.66          238% 11.66      53%

62 1.14E+07 3.7 2.70                      27% 0.81             78% 9.18         148%

64 3.94E+07 16.3 8.31                      49% 12.02          26% 10.30      37%

65 5.81E+07 7.9 12.03                   52% 19.47          146% 11.04      40%

66 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

68 4.74E+07 3.6 9.90                      175% 15.21          323% 10.62      195%

69 4.74E+07 3.6 9.90                      175% 15.21          323% 10.62      195%

70 6.15E+06 4 1.65                      59% (1.29)           132% 8.97         124%

74 1.11E+08 25.4 22.67                   11% 40.76          60% 13.17      48%

78 2.13E+08 26.2 42.95                   64% 81.30          210% 17.23      34%

79 5.49E+07 13.2 11.40                   14% 18.21          38% 10.92      17%

80 6.15E+06 3.5 1.65                      53% (1.29)           137% 8.97         156%

84 1.33E+08 19.1 27.08                   42% 49.56          159% 14.05      26%

85 4.28E+07 10.5 8.98                      14% 13.37          27% 10.43      1%

86 6.15E+06 3.5 1.65                      53% (1.29)           137% 8.97         156%

88 9.17E+07 17.9 18.76                   5% 32.92          84% 12.39      31%

89 3.00E+07 6.3 6.42                      2% 8.24             31% 9.92         57%

90 6.15E+06 3.45 1.65                      52% (1.29)           137% 8.97         160%

92 3.70E+07 9.7 7.82                      19% 11.05          14% 10.20      5%

93 3.27E+07 7.5 6.95                      7% 9.31             24% 10.03      34%

94 6.15E+06 3.45 1.65                      52% (1.29)           137% 8.97         160%

96 3.00E+07 7.6 6.42                      16% 8.24             8% 9.92         31%

97 9.17E+07 14.8 18.76                   27% 32.92          122% 12.39      16%

98 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

100 4.28E+07 12.1 8.98                      26% 13.37          11% 10.43      14%

101 1.28E+08 14.9 26.01                   75% 47.43          218% 13.84      7%

102 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

104 4.57E+07 13.7 9.56                      30% 14.53          6% 10.55      23%

105 1.73E+08 14.7 35.01                   138% 65.43          345% 15.64      6%

106 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

108 7.40E+07 16.4 15.22                   7% 25.86          58% 11.68      29%

109 2.16E+08 39.7 43.62                   10% 82.65          108% 17.36      56%

110 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

112 1.04E+08 18.3 21.17                   16% 37.76          106% 12.87      30%

113 4.04E+08 89 81.31                   9% 158.03        78% 24.90      72%

114 6.15E+06 3.1 1.65                      47% (1.29)           142% 8.97         189%

116 1.77E+08 27 35.79                   33% 66.98          148% 15.79      42%

117 1.21E+08 20 24.66                   23% 44.72          124% 13.57      32%

118 0.00E+00 64.9 0.42                      99% (3.75)           106% 8.72         87%

122 4.04E+08 96.8 81.31                   16% 158.03        63% 24.90      74%

123 7.40E+07 11.8 15.22                   29% 25.86          119% 11.68      1%

124 6.15E+06 3.1 1.65                      47% (1.29)           142% 8.97         189%

126 1.81E+08 21.3 36.70                   72% 68.82          223% 15.98      25%

127 5.49E+07 7.8 11.40                   46% 18.21          133% 10.92      40%

128 6.15E+06 3.1 1.65                      47% (1.29)           142% 8.97         189%

130 1.23E+08 16.2 25.09                   55% 45.59          181% 13.66      16%

133 3.94E+07 16.3 8.31                      49% 12.02          26% 10.30      37%

134 1.14E+07 3.7 2.70                      27% 0.81             78% 9.18         148%

136 7.35E+07 7.6 15.13                   99% 25.66          238% 11.66      53%

137 4.74E+07 3.6 9.90                      175% 15.21          323% 10.62      195%

138 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

140 5.81E+07 7.9 12.03                   52% 19.47          146% 11.04      40%

141 5.81E+07 7.9 12.03                   52% 19.47          146% 11.04      40%

142 6.15E+06 4 1.65                      59% (1.29)           132% 8.97         124%

139% 306% 112%

CBFEM 

models

Tabor- Pisek Bridge

Vyšehrad

em 

Bridge

%%
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All data I Sj Sj tabor-Pisek Sj Oscar Sj Marcos

mm4 MNm/rad Mnm/rad Mnm/rad Mnm/rad %

1 349380000 18.5 70.30                   280% 136.00        635% 22.70      23%

2 338980000 53.1 68.22                   28% 131.84        148% 22.28      58%

3 239700000 3.9 48.36                   1140% 92.13          2262% 18.31      369%

4 5556650000 260.1 1 111.75              327% 2 218.91     753% 230.99    11%

5 5556650000 210.5 1 111.75              428% 2 218.91     954% 230.99    10%

6 657860000 18.3 131.99                 621% 259.39        1317% 35.04      91%

7 1329000000 4.4 266.22                 5950% 527.85        11897% 61.88      1306%

8 164020000 2.5 33.22                   1229% 61.85          2374% 15.28      511%

9 100130000 14.8 20.45                   38% 36.30          145% 12.73      14%

10 59388000 76.7 12.30                   84% 20.00          74% 11.10      86%

11 59388000 2.3 12.30                   435% 20.00          770% 11.10      382%

1 232355208 75.256 46.89                   38% 89.19          19% 18.02      76%

2 313293874.7 111.8 63.08                   44% 121.56        9% 21.25      81%

3 232355208 81.028 46.89                   42% 89.19          10% 18.02      78%

4 171843208 71.464 34.79                   51% 64.98          9% 15.59      78%

5 171843208 27.471 34.79                   27% 64.98          137% 15.59      43%

6 122189141.3 47.112 24.86                   47% 45.12          4% 13.61      71%

7 51341866.67 9.724 10.69                   10% 16.78          73% 10.77      11%

8 6481237.333 1.192 1.72                      44% (1.16)           197% 8.98         653%

9 6481237.333 1.486 1.72                      15% (1.16)           178% 8.98         504%

1 1.40E+08 68.6 28.38                   59% 52.16          24% 14.31      79%

2 2.13E+08 26.2 42.95                   64% 81.30          210% 17.23      34%

4 1.82E+08 10.7 36.84                   244% 69.08          546% 16.00      50%

5 3.70E+07 1.8 7.82                      335% 11.05          514% 10.20      467%

7 8.66E+07 12 17.74                   48% 30.89          157% 12.18      2%

8 1.33E+08 19.1 27.08                   42% 49.56          159% 14.05      26%

9 6.15E+06 3.5 1.65                      53% (1.29)           137% 8.97         156%

10 1.82E+08 10.7 36.84                   244% 69.08          546% 16.00      50%

11 3.70E+07 1.8 7.82                      335% 11.05          514% 10.20      467%

13 5.49E+07 13.2 11.40                   14% 18.21          38% 10.92      17%

14 9.17E+07 17.9 18.76                   5% 32.92          84% 12.39      31%

15 6.15E+06 3.5 1.65                      53% (1.29)           137% 8.97         156%

17 4.28E+07 10.5 8.98                      14% 13.37          27% 10.43      1%

18 3.70E+07 9.7 7.82                      19% 11.05          14% 10.20      5%

19 6.15E+06 3.45 1.65                      52% (1.29)           137% 8.97         160%

21 3.00E+07 6.3 6.42                      2% 8.24             31% 9.92         57%

22 3.00E+07 7.6 6.42                      16% 8.24             8% 9.92         31%

23 6.15E+06 3.45 1.65                      52% (1.29)           137% 8.97         160%

25 3.27E+07 7.5 6.95                      7% 9.31             24% 10.03      34%

26 4.28E+07 12.1 8.98                      26% 13.37          11% 10.43      14%

27 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

29 9.17E+07 14.8 18.76                   27% 32.92          122% 12.39      16%

30 4.57E+07 13.7 9.56                      30% 14.53          6% 10.55      23%

31 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

33 1.28E+08 14.9 26.01                   75% 47.43          218% 13.84      7%

34 7.40E+07 16.4 15.22                   7% 25.86          58% 11.68      29%

35 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

37 1.73E+08 14.7 35.01                   138% 65.43          345% 15.64      6%

38 1.04E+08 18.3 21.17                   16% 37.76          106% 12.87      30%

39 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

41 2.16E+08 39.7 43.62                   10% 82.65          108% 17.36      56%

42 1.77E+08 27 35.79                   33% 66.98          148% 15.79      42%

43 6.15E+06 3.1 1.65                      47% (1.29)           142% 8.97         189%

45 4.04E+08 89 81.31                   9% 158.03        78% 24.90      72%

46 4.04E+08 96.8 81.31                   16% 158.03        63% 24.90      74%

50 1.21E+08 20 24.66                   23% 44.72          124% 13.57      32%

51 1.81E+08 21.3 36.70                   72% 68.82          223% 15.98      25%

52 6.15E+06 3.1 1.65                      47% (1.29)           142% 8.97         189%

54 7.40E+07 11.8 15.22                   29% 25.86          119% 11.68      1%

55 1.23E+08 16.2 25.09                   55% 45.59          181% 13.66      16%

56 6.15E+06 3.1 1.65                      47% (1.29)           142% 8.97         189%

58 5.49E+07 7.8 11.40                   46% 18.21          133% 10.92      40%

61 7.35E+07 7.6 15.13                   99% 25.66          238% 11.66      53%

62 1.14E+07 3.7 2.70                      27% 0.81             78% 9.18         148%

64 3.94E+07 16.3 8.31                      49% 12.02          26% 10.30      37%

65 5.81E+07 7.9 12.03                   52% 19.47          146% 11.04      40%

66 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

68 4.74E+07 3.6 9.90                      175% 15.21          323% 10.62      195%

69 4.74E+07 3.6 9.90                      175% 15.21          323% 10.62      195%

70 6.15E+06 4 1.65                      59% (1.29)           132% 8.97         124%

74 1.11E+08 25.4 22.67                   11% 40.76          60% 13.17      48%

78 2.13E+08 26.2 42.95                   64% 81.30          210% 17.23      34%

79 5.49E+07 13.2 11.40                   14% 18.21          38% 10.92      17%

80 6.15E+06 3.5 1.65                      53% (1.29)           137% 8.97         156%

84 1.33E+08 19.1 27.08                   42% 49.56          159% 14.05      26%

85 4.28E+07 10.5 8.98                      14% 13.37          27% 10.43      1%

86 6.15E+06 3.5 1.65                      53% (1.29)           137% 8.97         156%

88 9.17E+07 17.9 18.76                   5% 32.92          84% 12.39      31%

89 3.00E+07 6.3 6.42                      2% 8.24             31% 9.92         57%

90 6.15E+06 3.45 1.65                      52% (1.29)           137% 8.97         160%

92 3.70E+07 9.7 7.82                      19% 11.05          14% 10.20      5%

93 3.27E+07 7.5 6.95                      7% 9.31             24% 10.03      34%

94 6.15E+06 3.45 1.65                      52% (1.29)           137% 8.97         160%

96 3.00E+07 7.6 6.42                      16% 8.24             8% 9.92         31%

97 9.17E+07 14.8 18.76                   27% 32.92          122% 12.39      16%

98 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

100 4.28E+07 12.1 8.98                      26% 13.37          11% 10.43      14%

101 1.28E+08 14.9 26.01                   75% 47.43          218% 13.84      7%

102 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

104 4.57E+07 13.7 9.56                      30% 14.53          6% 10.55      23%

105 1.73E+08 14.7 35.01                   138% 65.43          345% 15.64      6%

106 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

108 7.40E+07 16.4 15.22                   7% 25.86          58% 11.68      29%

109 2.16E+08 39.7 43.62                   10% 82.65          108% 17.36      56%

110 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

112 1.04E+08 18.3 21.17                   16% 37.76          106% 12.87      30%

113 4.04E+08 89 81.31                   9% 158.03        78% 24.90      72%

114 6.15E+06 3.1 1.65                      47% (1.29)           142% 8.97         189%

116 1.77E+08 27 35.79                   33% 66.98          148% 15.79      42%

117 1.21E+08 20 24.66                   23% 44.72          124% 13.57      32%

118 0.00E+00 64.9 0.42                      99% (3.75)           106% 8.72         87%

122 4.04E+08 96.8 81.31                   16% 158.03        63% 24.90      74%

123 7.40E+07 11.8 15.22                   29% 25.86          119% 11.68      1%

124 6.15E+06 3.1 1.65                      47% (1.29)           142% 8.97         189%

126 1.81E+08 21.3 36.70                   72% 68.82          223% 15.98      25%

127 5.49E+07 7.8 11.40                   46% 18.21          133% 10.92      40%

128 6.15E+06 3.1 1.65                      47% (1.29)           142% 8.97         189%

130 1.23E+08 16.2 25.09                   55% 45.59          181% 13.66      16%

133 3.94E+07 16.3 8.31                      49% 12.02          26% 10.30      37%

134 1.14E+07 3.7 2.70                      27% 0.81             78% 9.18         148%

136 7.35E+07 7.6 15.13                   99% 25.66          238% 11.66      53%

137 4.74E+07 3.6 9.90                      175% 15.21          323% 10.62      195%

138 6.15E+06 3 1.65                      45% (1.29)           143% 8.97         199%

140 5.81E+07 7.9 12.03                   52% 19.47          146% 11.04      40%

141 5.81E+07 7.9 12.03                   52% 19.47          146% 11.04      40%

142 6.15E+06 4 1.65                      59% (1.29)           132% 8.97         124%

139% 306% 112%
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Annex 13: Comparison the average percentage error between formulas obtained on the different 

studies for all the profiles. Formula one. 

 

I Sj
Formula Sj 

tabor-Pisek

Formula Sj 

Minor's Thesis
Formula Sj

mm4 MNm/rad Mnm/rad Mnm/rad Mnm/rad

Different Bridges 9 100130000 14.8 20.45 38% 36.30 145% 22.77 54%

10 59388000 76.7 12.30 84% 20.00 74% 14.62 81%

11 59388000 2.3 12.30 435% 20.00 770% 14.62 536%

6 122189141 47.112 24.86 47% 45.12 4% 27.18 42%

7 51341867 9.724 10.69 10% 16.78 73% 13.01 34%

8 6481237.3 1.192 1.72 44% -1.16 197% 4.04 239%

9 6481237.3 1.486 1.72 15% -1.16 178% 4.04 172%

4 3.70E+07 1.8 7.82 335% 11.05 514% 10.15 464%

6 8.66E+07 12 17.74 48% 30.89 157% 20.06 67%

7 1.33E+08 19.1 27.08 42% 49.56 159% 29.40 54%

8 6.15E+06 3.5 1.65 53% -1.29 137% 3.97 14%

10 3.70E+07 1.8 7.82 335% 11.05 514% 10.15 464%

12 5.49E+07 13.2 11.40 14% 18.21 38% 13.73 4%

13 9.17E+07 17.9 18.76 5% 32.92 84% 21.08 18%

14 6.15E+06 3.5 1.65 53% -1.29 137% 3.97 14%

16 4.28E+07 10.5 8.98 14% 13.37 27% 11.31 8%

17 3.70E+07 9.7 7.82 19% 11.05 14% 10.15 5%

18 6.15E+06 3.45 1.65 52% -1.29 137% 3.97 15%

20 3.00E+07 6.3 6.42 2% 8.24 31% 8.74 39%

21 3.00E+07 7.6 6.42 16% 8.24 8% 8.74 15%

22 6.15E+06 3.45 1.65 52% -1.29 137% 3.97 15%

24 3.27E+07 7.5 6.95 7% 9.31 24% 9.28 24%

25 4.28E+07 12.1 8.98 26% 13.37 11% 11.31 7%

26 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

28 9.17E+07 14.8 18.76 27% 32.92 122% 21.08 42%

29 4.57E+07 13.7 9.56 30% 14.53 6% 11.89 13%

30 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

32 1.28E+08 14.9 26.01 75% 47.43 218% 28.34 90%

33 7.40E+07 16.4 15.22 7% 25.86 58% 17.55 7%

34 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

37 1.04E+08 18.3 21.17 16% 37.76 106% 23.50 28%

38 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

41 6.15E+06 3.1 1.65 47% -1.29 142% 3.97 28%

46 1.21E+08 20 24.66 23% 44.72 124% 26.98 35%

48 6.15E+06 3.1 1.65 47% -1.29 142% 3.97 28%

50 7.40E+07 11.8 15.22 29% 25.86 119% 17.55 49%

51 1.23E+08 16.2 25.09 55% 45.59 181% 27.42 69%

52 6.15E+06 3.1 1.65 47% -1.29 142% 3.97 28%

54 5.49E+07 7.8 11.40 46% 18.21 133% 13.73 76%

57 7.35E+07 7.6 15.13 99% 25.66 238% 17.45 130%

58 1.14E+07 3.7 2.70 27% 0.81 78% 5.02 36%

60 3.94E+07 16.3 8.31 49% 12.02 26% 10.63 35%

61 5.81E+07 7.9 12.03 52% 19.47 146% 14.36 82%

62 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

64 4.74E+07 3.6 9.90 175% 15.21 323% 12.23 240%

65 4.74E+07 3.6 9.90 175% 15.21 323% 12.23 240%

66 6.15E+06 4 1.65 59% -1.29 132% 3.97 1%

70 1.11E+08 25.4 22.67 11% 40.76 60% 25.00 2%

75 5.49E+07 13.2 11.40 14% 18.21 38% 13.73 4%

76 6.15E+06 3.5 1.65 53% -1.29 137% 3.97 14%

80 1.33E+08 19.1 27.08 42% 49.56 159% 29.40 54%

81 4.28E+07 10.5 8.98 14% 13.37 27% 11.31 8%

82 6.15E+06 3.5 1.65 53% -1.29 137% 3.97 14%

84 9.17E+07 17.9 18.76 5% 32.92 84% 21.08 18%

85 3.00E+07 6.3 6.42 2% 8.24 31% 8.74 39%

86 6.15E+06 3.45 1.65 52% -1.29 137% 3.97 15%

88 3.70E+07 9.7 7.82 19% 11.05 14% 10.15 5%

89 3.27E+07 7.5 6.95 7% 9.31 24% 9.28 24%

90 6.15E+06 3.45 1.65 52% -1.29 137% 3.97 15%

92 3.00E+07 7.6 6.42 16% 8.24 8% 8.74 15%

93 9.17E+07 14.8 18.76 27% 32.92 122% 21.08 42%

94 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

96 4.28E+07 12.1 8.98 26% 13.37 11% 11.31 7%

97 1.28E+08 14.9 26.01 75% 47.43 218% 28.34 90%

98 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

100 4.57E+07 13.7 9.56 30% 14.53 6% 11.89 13%

102 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

104 7.40E+07 16.4 15.22 7% 25.86 58% 17.55 7%

106 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

108 1.04E+08 18.3 21.17 16% 37.76 106% 23.50 28%

110 6.15E+06 3.1 1.65 47% -1.29 142% 3.97 28%

113 1.21E+08 20 24.66 23% 44.72 124% 26.98 35%

117 7.40E+07 11.8 15.22 29% 25.86 119% 17.55 49%

118 6.15E+06 3.1 1.65 47% -1.29 142% 3.97 28%

121 5.49E+07 7.8 11.40 46% 18.21 133% 13.73 76%

122 6.15E+06 3.1 1.65 47% -1.29 142% 3.97 28%

124 1.23E+08 16.2 25.09 55% 45.59 181% 27.42 69%

127 3.94E+07 16.3 8.31 49% 12.02 26% 10.63 35%

128 1.14E+07 3.7 2.70 27% 0.81 78% 5.02 36%

130 7.35E+07 7.6 15.13 99% 25.66 238% 17.45 130%

131 4.74E+07 3.6 9.90 175% 15.21 323% 12.23 240%

132 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

134 5.81E+07 7.9 12.03 52% 19.47 146% 14.36 82%

135 5.81E+07 7.9 12.03 52% 19.47 146% 14.36 82%

136 6.15E+06 4 1.65 59% -1.29 132% 3.97 1%

54% 134% 62%

Comparison of the First 

formula with the non- 

Truss bridges

# Error % Error % Error %



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 
520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

 

99 

 

 

 

 

 

 

 

 

 

I Sj
Formula Sj 

tabor-Pisek

Formula Sj 

Minor's Thesis
Formula Sj

mm4 MNm/rad Mnm/rad Mnm/rad Mnm/rad

Different Bridges 9 100130000 14.8 20.45 38% 36.30 145% 22.77 54%

10 59388000 76.7 12.30 84% 20.00 74% 14.62 81%

11 59388000 2.3 12.30 435% 20.00 770% 14.62 536%

6 122189141 47.112 24.86 47% 45.12 4% 27.18 42%

7 51341867 9.724 10.69 10% 16.78 73% 13.01 34%

8 6481237.3 1.192 1.72 44% -1.16 197% 4.04 239%

9 6481237.3 1.486 1.72 15% -1.16 178% 4.04 172%

4 3.70E+07 1.8 7.82 335% 11.05 514% 10.15 464%

6 8.66E+07 12 17.74 48% 30.89 157% 20.06 67%

7 1.33E+08 19.1 27.08 42% 49.56 159% 29.40 54%

8 6.15E+06 3.5 1.65 53% -1.29 137% 3.97 14%

10 3.70E+07 1.8 7.82 335% 11.05 514% 10.15 464%

12 5.49E+07 13.2 11.40 14% 18.21 38% 13.73 4%

13 9.17E+07 17.9 18.76 5% 32.92 84% 21.08 18%

14 6.15E+06 3.5 1.65 53% -1.29 137% 3.97 14%

16 4.28E+07 10.5 8.98 14% 13.37 27% 11.31 8%

17 3.70E+07 9.7 7.82 19% 11.05 14% 10.15 5%

18 6.15E+06 3.45 1.65 52% -1.29 137% 3.97 15%

20 3.00E+07 6.3 6.42 2% 8.24 31% 8.74 39%

21 3.00E+07 7.6 6.42 16% 8.24 8% 8.74 15%

22 6.15E+06 3.45 1.65 52% -1.29 137% 3.97 15%

24 3.27E+07 7.5 6.95 7% 9.31 24% 9.28 24%

25 4.28E+07 12.1 8.98 26% 13.37 11% 11.31 7%

26 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

28 9.17E+07 14.8 18.76 27% 32.92 122% 21.08 42%

29 4.57E+07 13.7 9.56 30% 14.53 6% 11.89 13%

30 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

32 1.28E+08 14.9 26.01 75% 47.43 218% 28.34 90%

33 7.40E+07 16.4 15.22 7% 25.86 58% 17.55 7%

34 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

37 1.04E+08 18.3 21.17 16% 37.76 106% 23.50 28%

38 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

41 6.15E+06 3.1 1.65 47% -1.29 142% 3.97 28%

46 1.21E+08 20 24.66 23% 44.72 124% 26.98 35%

48 6.15E+06 3.1 1.65 47% -1.29 142% 3.97 28%

50 7.40E+07 11.8 15.22 29% 25.86 119% 17.55 49%

51 1.23E+08 16.2 25.09 55% 45.59 181% 27.42 69%

52 6.15E+06 3.1 1.65 47% -1.29 142% 3.97 28%

54 5.49E+07 7.8 11.40 46% 18.21 133% 13.73 76%

57 7.35E+07 7.6 15.13 99% 25.66 238% 17.45 130%

58 1.14E+07 3.7 2.70 27% 0.81 78% 5.02 36%

60 3.94E+07 16.3 8.31 49% 12.02 26% 10.63 35%

61 5.81E+07 7.9 12.03 52% 19.47 146% 14.36 82%

62 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

64 4.74E+07 3.6 9.90 175% 15.21 323% 12.23 240%

65 4.74E+07 3.6 9.90 175% 15.21 323% 12.23 240%

66 6.15E+06 4 1.65 59% -1.29 132% 3.97 1%

70 1.11E+08 25.4 22.67 11% 40.76 60% 25.00 2%

75 5.49E+07 13.2 11.40 14% 18.21 38% 13.73 4%

76 6.15E+06 3.5 1.65 53% -1.29 137% 3.97 14%

80 1.33E+08 19.1 27.08 42% 49.56 159% 29.40 54%

81 4.28E+07 10.5 8.98 14% 13.37 27% 11.31 8%

82 6.15E+06 3.5 1.65 53% -1.29 137% 3.97 14%

84 9.17E+07 17.9 18.76 5% 32.92 84% 21.08 18%

85 3.00E+07 6.3 6.42 2% 8.24 31% 8.74 39%

86 6.15E+06 3.45 1.65 52% -1.29 137% 3.97 15%

88 3.70E+07 9.7 7.82 19% 11.05 14% 10.15 5%

89 3.27E+07 7.5 6.95 7% 9.31 24% 9.28 24%

90 6.15E+06 3.45 1.65 52% -1.29 137% 3.97 15%

92 3.00E+07 7.6 6.42 16% 8.24 8% 8.74 15%

93 9.17E+07 14.8 18.76 27% 32.92 122% 21.08 42%

94 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

96 4.28E+07 12.1 8.98 26% 13.37 11% 11.31 7%

97 1.28E+08 14.9 26.01 75% 47.43 218% 28.34 90%

98 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

100 4.57E+07 13.7 9.56 30% 14.53 6% 11.89 13%

102 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

104 7.40E+07 16.4 15.22 7% 25.86 58% 17.55 7%

106 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

108 1.04E+08 18.3 21.17 16% 37.76 106% 23.50 28%

110 6.15E+06 3.1 1.65 47% -1.29 142% 3.97 28%

113 1.21E+08 20 24.66 23% 44.72 124% 26.98 35%

117 7.40E+07 11.8 15.22 29% 25.86 119% 17.55 49%

118 6.15E+06 3.1 1.65 47% -1.29 142% 3.97 28%

121 5.49E+07 7.8 11.40 46% 18.21 133% 13.73 76%

122 6.15E+06 3.1 1.65 47% -1.29 142% 3.97 28%

124 1.23E+08 16.2 25.09 55% 45.59 181% 27.42 69%

127 3.94E+07 16.3 8.31 49% 12.02 26% 10.63 35%

128 1.14E+07 3.7 2.70 27% 0.81 78% 5.02 36%

130 7.35E+07 7.6 15.13 99% 25.66 238% 17.45 130%

131 4.74E+07 3.6 9.90 175% 15.21 323% 12.23 240%

132 6.15E+06 3 1.65 45% -1.29 143% 3.97 32%

134 5.81E+07 7.9 12.03 52% 19.47 146% 14.36 82%

135 5.81E+07 7.9 12.03 52% 19.47 146% 14.36 82%

136 6.15E+06 4 1.65 59% -1.29 132% 3.97 1%

54% 134% 62%
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Annex 14: Comparison average percentage error between formulas obtained on the different 

studies for big profiles. Formula 2. 

 

 

 

 

  

 

 

I Sj
Formula Sj 

tabor-Pisek

Formula Sj 

Minor's Thesis
Formula Sj

mm4 MNm/rad Mnm/rad Mnm/rad Mnm/rad

Different Bridges 1 3.49E+08 18.5 70.30 280% 136.00 635% 44.99 143%

2 3.39E+08 53.1 68.22 28% 131.84 148% 44.57 16%

3 2.4E+08 3.9 48.36 1140% 92.13 2262% 40.60 941%

4 5.56E+09 260.1 1111.75 327% 2218.91 753% 253.28 3%

5 5.56E+09 210.5 1111.75 428% 2218.91 954% 253.28 20%

6 6.58E+08 18.3 131.99 621% 259.39 1317% 57.33 213%

7 1.33E+09 4.4 266.22 5950% 527.85 11897% 84.17 1813%

8 1.64E+08 2.5 33.22 1229% 61.85 2374% 37.57 1403%

1 2.32E+08 75.256 46.89 38% 89.19 19% 40.31 46%

2 3.13E+08 111.8 63.08 44% 121.56 9% 43.54 61%

3 2.32E+08 81.028 46.89 42% 89.19 10% 40.31 50%

4 1.72E+08 71.464 34.79 51% 64.98 9% 37.89 47%

5 1.72E+08 27.471 34.79 27% 64.98 137% 37.89 38%

2 2.13E+08 26.2 42.95 64% 81.30 210% 39.52 51%

3 1.82E+08 10.7 36.84 244% 69.08 546% 38.30 258%

6 1.82E+08 10.7 36.84 244% 69.08 546% 38.30 258%

12 1.73E+08 14.7 35.01 138% 65.43 345% 37.93 158%

14 2.16E+08 39.7 43.62 10% 82.65 108% 39.65 0%

15 1.77E+08 27 35.79 33% 66.98 148% 38.09 41%

17 4.04E+08 89 81.31 9% 158.03 78% 47.19 47%

18 4.04E+08 96.8 81.31 16% 158.03 63% 47.19 51%

20 1.81E+08 21.3 36.70 72% 68.82 223% 38.27 80%

27 2.13E+08 26.2 42.95 64% 81.30 210% 39.52 51%

34 1.73E+08 14.7 35.01 138% 65.43 345% 37.93 158%

36 2.16E+08 39.7 43.62 10% 82.65 108% 39.65 0%

38 4.04E+08 89 81.31 9% 158.03 78% 47.19 47%

39 1.77E+08 27 35.79 33% 66.98 148% 38.09 41%

41 4.04E+08 96.8 81.31 16% 158.03 63% 47.19 51%

43 1.81E+08 21.3 36.70 72% 68.82 223% 38.27 80%

392% 826% 213%

Error %

Steel Railway 

Bridge

Comparison of the 

second formula 

with the non- Truss 

bridges

# Error % Error %


